User's and Service Guide

Agilent Technologies 85058B/E 1.85 mm Calibration Kits

Agilent Part Number: 85058-90005 Printed in USA Print Date: January 2003

© Copyright 2003 Agilent Technologies, Inc. All rights reserved.

Documentation Warranty

THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED "AS IS," AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, AGILENT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. AGILENT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD AGILENT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.

Assistance

Product maintenance agreements and other customer assistance agreements are available for Agilent products.

For any assistance, contact Agilent Technologies. Refer to Table 5-1 on page 5-3.

1. General Information

Calibration Kit Overview	1-2
Two Models for Defining Calibration Standards	1-2
1.85 mm Calibration Techniques	1-4
85058B (Standard) Kit Contents	1-4
85058E (Economy) Kit Contents	
Calibration Definitions	1-7
Achieving Specified Frequency Performance	
Offset-Short Calibration Using the 85058B (Standard) Calibration Kit	
Broadband SOLT Calibration Using the 85058E (Economy) Calibration Kit	
Network Analyzer Calibrations.	
Calibration Residual Error Specifications	1-14
Incoming Inspection	1-17
Recording the Device Serial Numbers	1-18
Slotted Connectors	1-20
Clarifying the Sex of a Connector	1-20
Preventive Maintenance	

2. Specifications

Environmental Requirements	2-2
Temperature—What to Watch Out For	2-2
Mechanical Characteristics	2-3
Pin Depth	2-3
Electrical Specifications	2-4
Certification	2-9

3. Use, Maintenance, and Care of the Devices

4. Performance Verification

roduction	2

Contents

	lent Verifies the Devices in This Kit4-2	
Recertifi	tion	i.
How O	en to Recertify	i
Where	Send a Kit for Recertification4-3	j
5. Troublesh	oting	
Troubles	boting Process	1
Returnin	a Kit or Device to Agilent	į
6. Replaceab	e Parts	
Introduc	on	l
A. Standard	Definitions	
Version (nanges	
	Class Assignments	
	orms	
	tandard Definitions	
	he System Impedance	

1 General Information

Calibration Kit Overview

The Agilent 85058B (Standard) and 85058E (Economy) 1.85 mm calibration kits are used to calibrate Agilent network analyzers up to 67 GHz for measurements of components with 1.85 mm connectors. The 1.85 mm connector is designed such that it may be mated with 2.4 mm connectors.

The 85058B (Standard) is the more accurate of the two calibration kits, containing twelve calibration standards. The 85058E (Economy) kit is less accurate, containing six calibration standards.

The standards in these calibration kits allow you to perform simple 1- or 2-port and TRM (thru-reflect-match) calibrations.

Two Models for Defining Calibration Standards

The 85058 family of calibration kits offers the following two models for defining calibration standards:

- DataBased model
 - □ PNA: 85058B and 85058E
 - □ 8510: DataBased model not available
- Polynomial model
 - □ PNA: 85058BP and the 85058EP
 - □ 8510: 85058B and 85058E

The PNA family of analyzers offers both the DataBased models and the Polynomial models as cal kit selections. In contrast, the 8510 family of analyzers offers only the Polynomial models as cal kit selections.

DataBased Model

The DataBased model can be used with the PNA but NOT with the 8510 family of analyzers. For the PNA, the DataBased model (85058B or 85058E) of each calibration kit provides higher accuracy for describing calibration standards than the Polynomial model (85058BP or 85058EP). The DataBased nominal S-Parameter model for each calibration standard is generated by using a theoretical derivation or a high accuracy S-Parameter measurement. Therefore, errors that can be the result of polynomial model approximations do not exist. These nominal S-parameter models are stored as part of the DataBased model.

The DataBased models may only be used with the SmartCal (Guided) Calibration method of the Cal Wizard. Using the DataBased models with the Unguided Calibration method of the Cal Wizard is not allowed.

The DataBased models may NOT be edited with the Advanced Modify Cal Kit dialog box. Attempts to programmatically edit the definitions of the DataBased-model calibration standards will result in reported errors (i.e. SCPI Execution Error). In the PNA's Modify Calibration Class Assignments dialog box¹, the "Expanded Math" feature is turned ON by default when the 85058B DataBased model is selected from a cal kit menu. In order to achieve a more accurate calibration, Expanded Math uses the data at any given frequency from ALL measured standards instead of using only the three standards specified in the class definitions (see Table A-3 on page A-5). If you are using a PNA, it is RECOMMENDED that you use Expanded Math with the 85058B DataBased model for the highest accuracy. Expanded Math has no effect with the 85058E DataBased model.

Polynomial Model

The Polynomial model is the only choice offered by the 8510 family of analyzers to define calibration standards. In contrast, the PNA offers both the DataBased and the Polynomial models.

Polynomial models are less accurate than the DataBased models. The polynomial models describe the calibration standards with traditional four-term polynomial calibration standard modeling parameters. For the PNA, it is NOT RECOMMENDED that the polynomial models be used if the most accurate results are desired.

The Polynomial models may be used with SmartCal (Guided) and the Unguided Mechanical Calibration method of the Cal Wizard.

Unlike the DataBased models, the Polynomial models allow you to modify the definitions of calibration standards like any other traditional model-based calibration kit. This is accomplished with the Advanced Modify Cal Kit dialog box. For more information on modifying the definitions of the calibration standards, refer to your network analyzer user's guide (8510 family) or online Help (PNA family).

In the Modify Class Assignments dialog box, the "Expanded Math" feature is turned OFF by default when a Polynomial model is selected. It is NOT RECOMMENDED that you use Expanded Math with a Polynomial model unless the calibration kit includes overlapped banded standards such as a sliding load.

Accuracy Ranking of the 1.85 mm Calibration Kits (item #1 has highest accuracy)

- PNA family:
 - 1. 85058B (Standard), DataBased Model
 - 2. 85058BP (Standard), Polynomial Model
 - 3. 85058E (Economy), DataBased Model
 - 4. 85058EP (Economy), Polynomial Model
- 8510 family:
 - 1. 85058B (Standard), Polynomial Model
 - 2. 85058EP (Economy), Polynomial Model

^{1.} Pathway to the Modify Calibration Class Assignments dialog box: Calibration > Advanced Modify Cal Kit > Edit Kit > Class Assignments: Edit.

1.85 mm Calibration Techniques

85058B (Standard) Calibration Kit

- Offset Short Calibration technique
 - Files:
 (8510) CK_185MMBA1
 (PNA) 85058B DataBased.ckt
 (PNA) 85058BP Polynomial.ckt
 - $\hfill\square$ OSL/SSS
 - □ "Lowband" definition of lowband load, open, and Short 1

85058E (Economy) Calibration Kit

- Broadband Load Calibration technique
 - Files: (8510) CK_185MMEA1 (PNA) 85058E DataBased.ckt (PNA) 85058EP Polynomial.ckt
 - \Box OSL
 - □ "Broadband" definition of broadband termination, open, and Short 1

85058B (Standard) Kit Contents

The 85058B (Standard) calibration kit contains the following:

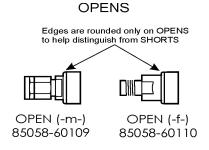
- one pair (male and female) of an offset open
- one pair (male and female) of a lowband load
- four pairs (male and female) of offset shorts
- three adapters
- a 5/16 inch, 90 N–cm (8 in–lb) torque wrench for use on the 1.85 mm connectors
- an open-end wrench for the 8mm flats on some of the components
- a data disk that contains the calibration definitions for the devices in the kit
- two gage sets
- a 10x magnifying glass

Refer to Table 6-1 on page 6-3 and Figure 6-1 on page 6-5 for a complete list of kit contents and their associated part numbers.

Lowband Loads

The best operating region of the load is from DC to 35 GHz. Performance degrades quickly above 35 GHz.

Offset Opens and Shorts


The offset opens and shorts are built from parts that are machined to the current state-of-the-art in precision machining. The offset short's inner conductors have a one-piece construction, common with the shorting plane. This construction provides for extremely repeatable connections. The offset opens have inner conductors that are supported by a strong, low-dielectric plastic to provide repeatability and reliability. Both the opens and shorts are constructed so that the pin depth can be controlled very tightly, thereby minimizing phase errors. The length of the offset opens is designed so that the difference in phase of their reflection coefficients is approximately 180 degrees at all frequencies, with respect to offset Short 1.

Different combinations of offset shorts using three different lengths are used to calibrate frequency ranges from 35 to 50 GHz and from 50 to 67 GHz. The calibration coefficients for these offset shorts are optimized for their applicable bandwidths.

How to Identify Devices The shorts, opens, and loads in the kit are identified by the number of rings (or bands) around the body of the device.

- lowband loads have no rings or bands
- 5.4 mm offset short has 1 ring or band and is identified as Short 1
- 6.3 mm offset short has 2 rings or bands and is identified as Short 2
- 7.12 mm offset short has 3 rings or bands and is identified as Short 3
- 7.6 mm offset short has 4 rings or bands and is identified as Short 4
- offset open has 1 ring and is designed to be 180 degrees out of phase with Short 1. In addition, the offset open has a rounded edge to help distinguish it from the shorts (see Figure 1-1).

Figure 1-1 OPEN Calibration Devices: 85058B and 85058E

Adapters

Like the other devices in the kit, the adapters are built to very tight tolerances to provide good broadband performance and to ensure stable, repeatable connections.

The adapters are designed (phase matched) so that their nominal electrical lengths are the same, which allows them to be used in calibration procedures for non-insertable devices.

85058E (Economy) Kit Contents

The 85058E (Economy) calibration kit contains the following:

- one pair (male and female) of an offset open, offset short, and a broadband termination
- three adapters
- a 5/16 inch, 90 N-cm (8 in-lb) torque wrench for use on the 1.85 mm connectors
- an open-end wrench for the 8 mm flats on some of the components
- a data disk that contains the calibration definitions for the devices in the kit

Refer to Table 6-1 on page 6-3 and Figure 6-2 on page 6-7 for a complete list of kit contents and their associated part numbers.

Broadband Terminations

The broadband terminations are instrument-grade, 50Ω terminations that have been optimized for performance up to 67 GHz. The rugged internal structure provides for highly repeatable connections. A distributed resistive element on sapphire provides excellent stability and return loss. The smooth body of the broadband termination allows it to be easily distinguished from an open and short.

Offset Opens and Shorts

The opens and shorts are built from parts that are machined to the current state-of the-art precision machining.

The short's inner conductors have a one-piece construction, common with the shorting plane. This construction provides for extremely repeatable connections.

The offset opens have inner conductors that are supported by a strong, low-dielectric plastic to provide repeatability and reliability.

Both the opens and shorts are constructed so that the pin depth can be controlled very tightly, thereby minimizing phase errors. The opens and shorts have offsets. The lengths of these offsets are designed so that the difference in phase of their reflection coefficients is approximately 180 degrees at all frequencies. The open has a rounded edge to help distinguish it from the shorts (see Figure 1-1 on page 1-5).

Adapters

Like the other devices in the kit, the adapters are built to very tight tolerances to provide good broadband performance and to ensure stable, repeatable connections.

The adapters are designed so that their nominal electrical lengths are the same, which allows them to be used in calibration procedures for non-insertable devices.

Calibration Definitions

The calibration kit must be selected prior to performing a calibration. In addition, the calibration definitions for the devices in the kit must be installed in the analyzer if not permanently stored in the internal memory or hard drive.

The calibration definitions can be:

- recalled from the analyzer (if stored in internal memory or the hard drive)
- loaded from the provided disk
- entered from the front panel (Polynomial models only)

Refer to your network analyzer user's guide (8510 family) or online Help (PNA family) for instructions on selecting the calibration kit, installing (if necessary) the calibration definitions, and performing a calibration.

Equipment Required but Not Supplied

Gage sets (not provided with the 85058E), adapters, ESD protection devices, and various connector cleaning supplies are *not* included in the calibration kit but are required to ensure successful operation of the calibration kit. Refer to Table 6-3 on page 6-8 for ordering information.

Achieving Specified Frequency Performance

The standards in this calibration kit allow you to perform 1- or 2-port and TRM (thru-reflect-match) calibrations.

NOTE For best results, before beginning calibration refer to "Clarifying the Sex of a Connector" on page 1-20.

		Calibration	n Kit Label:			
		8510: 1.85MM PNA: 85058B 85058BI				
		8510: CK_185 PNA: 85058B	e Name: 5MMBA1 DataBased.ckt P Polynomial.ck	t		
Frequency Range	Calibration Technique	"Open" Standard (Reflection)	"Short" Standard (Reflection)	"Load" Standard (Reflection)	"Thru" Standard (not used for 1–port cal)	"Isolation" Standard ^a
DC–35 GHz	SOLT ^b	Open	Short 1	Load LB	Thru	Load BB ^c
35–50 GHz	Offset Shorts	Short 2	Short 1	Short 4	Thru	Load BB ^c
50–67 GHz	Offset Shorts	Short 3	Short 1	Short 4	Thru	Load BB ^c
		To Combi	ne Frequenc	y Ranges ^d		
DC-35 GHz						
	SOLT ^b and	Open	Short 1	Load LB	Thru	Load BB ^c
	Offset Shorts					
35–67 GHz						
	Offset Shorts	Short 2	Short 1	Short 4	Thru	Load BB ^c
				Short 2		
DC-67 GHz						
	SOLT ^b and	Open	Short 3	Load LB	Thru	Load BB ^c
	Offset Shorts	Short 3	Short 1	Short 4		
				Short 2		

Offset-Short Calibration Using the 85058B (Standard) Calibration Kit Table 1-1 Offset-Short Calibration Standards

a. For best measurement results, the isolation standard should be the equivalent impedance of the device under test.

b. SOLT = Short, Open, Load and Thru standards

- c. Load BB is the lowband load using a broadband load definition.
- d. Combinations of the calibration methods shown in the upper half of Table 1-1 are used to calibrate over the frequency ranges shown in the lower half of the table.

Broadband SOLT Calibration Using the 85058E (Economy) Calibration Kit

The Broadband SOLT calibration is the only calibration technique available with the 85058E (Economy) kit. You can calibrate from DC to 67 GHz using the standards in Table 1-2.

Table 1-2 85058E (Economy) Broadband SOLT ^a	Calibration Standards
--	-----------------------

		Calibration Kit Label: 8510: 1.85MEA.1 PNA: 85058E DataBased 85058EP Polynomial				
		Disk File Name: 8510: CK_185MMEA1 PNA: 85058E DataBased.ckt 85058EP Polynomial.ckt				
Frequency Range	Calibration Technique	"Open" Standard	"Short" Standard	"Load" Standard	"Thru" Standard (not used for 1–port cal)	"Isolation" Standard
DC-67 GHz	SOLT	Open (broadband)	Short 1 (broadband)	Load BB (broadband)	Thru	Load BB

a. SOLT = Short, Open, Load and Thru standards

Network Analyzer Calibrations

To calibrate a Network Analyzer, use the following combinations of standards listed in Table 1-3 and Table 1-4 (for 1-port calibrations), and Table 1-5 and Table 1-6 (for 2-port calibrations) for the best results. For more information, refer to Table 1-1 on page 1-8 and Table 1-2 on page 1-9.

Frequency Range	Calibration Type	Calibration Standards	Standard Numbers ^a
	8510: CK_18	5MMBA1	
	PNA: 850581	B DataBased.ckt	t
	85058]	BP Polynomial.c	kt
DC to 35 Ghz	Open	Open	2, 4
	Short	Short 1	1, 3
	Load	Load	9, 24 ^b
35 to 50 GHz	Offset Short	Short 1	12, 16
	Offset Short	Short 2	13, 17
	Offset Short	Short 4	15, 19
50 to 67 GHz	Offset Short	Short 1	12, 16
	Offset Short	Short 3	14, 18
	Offset Short	Short 4	15, 19

Table 1-3 85058B (Standard) 1-Port Calibration

a. Standard numbers reference the line numbers in the Standard Definitions tables, located in the Appendix.

b. PNA-family only.

Frequency Range	Calibration Type	Calibration Standards	Standard Numbers ^a		
8510: CK_185MMEA1					
	PNA: 85058E DataBased.ckt				
	85058EP Polynomial.ckt				
DC to 67 GHz	Open	Open	2, 4		
	Short	Short 1	1, 3		
	Load	Termination (broadband)	9, 24 ^b		

 Table 1-4
 85058E (Economy) 1-Port Calibration

a. Standard numbers reference the line numbers in the Standard Definitions tables located in the Appendix.

b. PNA-family only.

Frequency Range	Calibration Type	Calibration Standards	Standard Numbers
	8510: CK_18	5MMBA1	
	PNA: 85058]	B DataBased.ck	t
	85058E	3P Polynomial.c	kt
DC to 35 GHz	Open	Open	2, 4
	Short	Short 1	1, 3
	Load	Load	9, 24 ^b
	Thru	Thru	11
35 to 50 GHz	Offset Short	Short 1	12, 16
	Offset Short	Short 2	13, 17
	Offset Short	Short 4	15, 19
	Thru	Thru	11
50 to 67 GHz	Offset Short	Short 1	12, 16
	Offset Short	Short 3	14, 18
	Offset Short	Short 4	15, 19
	Thru	Thru	11
DC to 67 GHz	Thru	Thru	11
	Reflect	Short 1	5, 7
	Match	Load	$10^{ m b,c},21^{ m d}$ $22^{ m b,c}$

Table 1-5 85058B (Standard) 2-Port Calibration^a

- a. Standard numbers reference the line numbers in the Standard Definitions tables, located in the Appendix.
- b. PNA-family only.
- c. Polynomial-model only (85058BP).
- d. 8510-family only.

Frequency Range	Calibration Type	Calibration Standards	Standard Numbers
	8510: CK_18	5MMEA1	
	PNA: 850581	E DataBased.ck	t
	85058E	P Polynomial.cl	st
DC to 67 GHz	Open	Open	2, 4
	Short	Short 3	1, 3
	Load	Termination (broadband)	9, 24 ^b
	Thru	Thru	11
DC to 67 GHz	Thru	Thru	11
	Reflect	Short 1	1, 3
	Match	Termination (broadband)	9 ^b , 14 ^c , 24 ^b

Table 1-6 85058E (Economy) 2-Port Calibration^a

a. Standard numbers reference the line numbers in the Standard Definitions tables, located in the Appendix.

b. PNA-family only.

c. 8510-family only.

Calibration Residual Error Specifications

Please download our free Vector Network Analyzer Uncertainty Calculator from <u>http://www.agilent.com/find/na_calculator</u>.

Table 1-785058B (Standard) Residual System Calibration Error SpecificationsUsing the 85058B DataBased.ckt Calibration Definitions File

ParameterCalFrequencyMethod ^a Range				Residuals		
			PNA			
			DataBased Model ^b Expanded Math Unselected	DataBased Model ^b Expanded Math Selected		
Directivity	OSL	DC to 2 GHz	35	35		
	OSL	2 to 10 GHz	35	40		
	OSL	10 to 20 GHz	34	38		
	OSL	20 to 35 GHz	29	37		
	SSS	35 to 50 GHz	36	37		
	SSS	50 to 67 GHz	34	34		
Source Match	OSL	DC to 2 GHz	34	34		
	OSL	2 to 10 GHz	33	43		
	OSL	10 to 20 GHz	30	41		
	OSL	20 to 35 GHz	26	42		
	SSS	35 to 50 GHz	41	42		
	SSS	50 to 67 GHz	39	40		

Parameter	Cal Method ^a	Frequency Range	Resi	duals		
			PNA			
			DataBased Model ^b Expanded Math Unselected	DataBased Model ^b Expanded Math Selected		
Reflection Tracking	OSL	DC to 2 GHz	0.017	0.017		
	OSL	2 to 10 GHz	0.012	0.012		
	OSL	10 to 20 GHz	0.033	0.033		
	OSL	20 to 35 GHz	0.033	0.033		
	SSS	35 to 50 GHz	0.032	0.025		
	SSS	50 to 60 GHz	0.038	0.033		
	SSS	60 to 67 GHz	0.040	0.040		

Table 1-7 (Continued) 85058B (Standard) Residual System Calibration ErrorSpecificationsUsing the 85058B DataBased.ckt CalibrationDefinitions File

a. For Expanded Math, all mateable standards in class are measured for the calibration. For example, using the OSL cal method with expanded math measures OSSSSL.

b. Refer to "Two Models for Defining Calibration Standards," on page 1-2.

Parameter	Cal Method ^a	Frequency Range	Residuals
			PNA DataBased Model ^b
Directivity	OSL	DC to 2 GHz	30
	OSL	2 to 10 GHz	30
	OSL	10 to 20 GHz	30
	OSL	20 to 35 GHz	30
	OSL	35 to 50 GHz	28
	OSL	50 to 67 GHz	28
Source Match	OSL	DC to 2 GHz	28
	OSL	2 to 10 GHz	28
	OSL	10 to 20 GHz	26
	OSL	20 to 35 GHz	26
	OSL	35 to 60 GHz	25
	OSL	60 to 67 GHz	24
Reflection Tracking	OSL	DC to 2 GHz	0.025
	OSL	2 to 10 GHz	0.025
	OSL	10 to 20 GHz	0.025
	OSL	20 to 35 GHz	0.025

Table 1-885058E (Economy) Residual System Calibration Error Specifications Using
the 85058E DataBased.ckt Calibration Definitions File

Table 1-8	(Continued) 85058E (Economy) Residual System Calibration Error
	Specifications Using the 85058E DataBased.ckt Calibration Definitions File

Parameter	Cal Method ^a	Frequency Range	Residuals
			PNA DataBased Model ^b
	OSL	35 to 60 GHz	0.040
	OSL	60 to 67 GHz	0.055

a. Expanded Math has no effect with the 85058E DataBased model or the 85058EP Polynomial model.

Incoming Inspection

Verify that the shipment is complete by referring to Figure 6-1 on page 6-5 or Figure 6-2 on page 6-7.

Check for damage. The foam-lined storage case provides protection during shipping.

If the case or any device appears damaged, or if the shipment is incomplete, contact Agilent. See Table 5-1 on page 5-3. Agilent will arrange for repair or replacement of incomplete or damaged shipments without waiting for a settlement from the transportation company.

When you send the kit or device to Agilent, include a service tag (found near the end of this manual) with the following information:

- your company name and address
- the name of a technical contact person within your company, and the person's complete phone number
- the model number and serial number of the kit
- the part number and serial number of the device
- the type of service required
- a *detailed* description of the problem

Recording the Device Serial Numbers

In addition to the kit serial number, the devices in this kit are individually serialized (serial numbers are labeled onto the body of each device). Record these serial numbers in Table 1-9 for the 85058B (Standard) and Table 1-9 for the 85058E (Economy). Recording the serial numbers will prevent confusing the devices in this kit with similar devices in other kits.

Device	Serial Number
Calibration kit	
Lowband load -m-	
Lowband load –f–	
Offset open -m-	
Offset open -f-	
5.4 mm offset short 1 –m–	
5.4 mm offset short 1 –f–	
6.3 mm offset short 2 –m–	
6.3 mm offset short 2 –f–	
7.12 mm offset short 3 –m–	
7.12 mm offset short 3 –f–	
7.6 mm offset short 4 -m-	
7.6 mm offset short 4 –f–	
Adapter m–f	
Adapter m–m	
Adapter f–f	

 Table 1-9
 Serial Number Record for 85058B (Standard)

 Table 1-10
 Serial Number Record for 85058E (Economy)

Device	Serial Number
Calibration kit	
Broadband termination -m-	
Broadband termination –f–	
Open -m-	
Open –f–	
5.4 mm offset short -m-	
5.4 mm offset short –f–	
Adapter m–f	
Adapter m–m	
Adapter f–f	

Slotted Connectors

The female connectors in this kit have slotted contacts. Therefore, the female devices are instrument grade. Unlike precision slotless connectors, the slotted contacts prevent the devices from being classified as metrology grade.

With slotted connectors, the connected male device partially determines the connector impedance of the female device by flaring the contact fingers and consequently varying the diameter of the female center conductor. Precision slotless connectors prevent diameter variations in the female center conductor, therefore allowing greater control over connector impedance.

Clarifying the Sex of a Connector

In this manual and in the prompts of the PNA calibration wizard, the sex of calibration devices and adapters is referred to in terms of the calibration device connector. For example, the label OPEN - m-refers to a male open with a male connector.

8510-series, 872x, and 875x ONLY: In contrast, during a measurement calibration, the network analyzer softkey menus label a 1.85 mm calibration device with reference to the sex of the analyzer's test port connector—not the calibration device connector. For example, the label SHORT(F) refers to the short that is to be connected to the female test port. This will be a male short from the calibration kit.

Connector gages are referred to in terms of the connector that it measures. For instance, a male connector gage has a female connector on the gage so that it can measure male devices.

Preventive Maintenance

The best techniques for maintaining the integrity of the devices in this kit include:

- routine visual inspection
- cleaning
- proper gaging
- proper connection techniques

All of the above are described in Chapter 3. Failure to detect and remove dirt or metallic particles on a mating plane surface can degrade repeatability and accuracy and can damage any connector mated to it. Improper connections, resulting from pin depth values being out of the *observed* limits (see Table on page 2-4), or from bad connections, can also damage these devices.

2 Specifications

Environmental Requirements

Table 2-1 Environmental Requirements

Parameter	Limits		
Operating temperature ^a	+20 °C to +26 °C (+68 °F to +79 °F)		
Error-corrected temperature range ^b	$\pm 1~^{\circ}\mathrm{C}$ of measurement calibration temperature		
Storage temperature	-40 °C to +75 °C (-40 °F to +167 °F)		
Altitude			
Operation	< 4,500 meters (~15,000 feet)		
Storage	< 15,000 meters (~50,000 feet)		
Relative humidity	Always non-condensing		
Operation	0 to 80% (26 °C maximum dry bulb)		
Storage	0 to 90%		

a. The temperature range over which the calibration standards maintain conformance to their specifications.

b. The allowable network analyzer ambient temperature drift during measurement calibration and during measurements when the network analyzer error correction is turned on. Also, the range over which the network analyzer maintains its specified performance while correction is turned on.

Temperature—What to Watch Out For

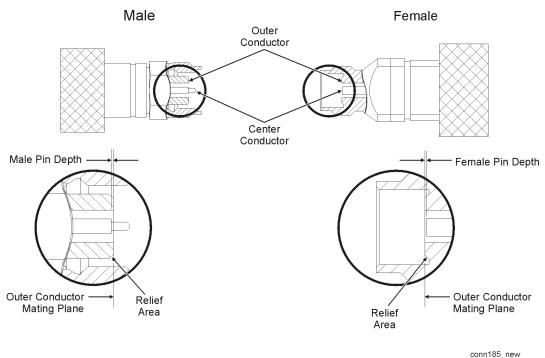
Changes in temperature can affect electrical characteristics. Therefore, the operating temperature is a critical factor in performance. During a measurement calibration, the temperature of the calibration devices must be stable and within the range specified in Table 2-1.

IMPORTANT Avoid unnecessary handling of the devices during calibration because your fingers are a heat source.

Performance verification and measurements of devices under test need not be performed within the operating temperature range of the calibration devices, but they must be within the error-corrected temperature of the network analyzer (± 1 °C of the measurement calibration temperature). For example, if the calibration is performed at +20 °C, the error-corrected temperature range is +19 °C to +21 °C. It is then appropriate to perform measurements and performance verifications at +19 °C, which is outside the operating temperature range of the calibration devices, since only the actual calibration must be performed within the operating temperature range.

Mechanical Characteristics

Mechanical characteristics such as center conductor protrusion and pin depth are *not* performance specifications. They are, however, important supplemental characteristics related to electrical performance. Agilent Technologies verifies the mechanical characteristics of the devices in this kit with special gaging processes and electrical testing. This ensures that the device connectors do not exhibit any improper pin depth when the kit leaves the factory.


"Gaging Procedures" on page 3-10 explains how to use gages to determine if the kit devices have maintained their mechanical integrity. (Refer to Table 2-2 on page 2-4 for typical and observed pin depth limits.)

Pin Depth

Pin depth is the distance the center conductor mating plane differs from being flush with the outer conductor mating plane. See Figure 2-1 The pin depth of a connector can be in one of two states: either protruding or recessed.

Protrusion is the condition in which the center conductor extends beyond the outer conductor mating plane. This condition will indicate a positive value on the connector gage.

Recession is the condition in which the center conductor is set back from the outer conductor mating plane. This condition will indicate a negative value on the connector gage.

Figure 2-1 Connector Pin Depth

The pin depth value of each calibration device in the kit is not specified, but is an important mechanical parameter. The electrical performance of the device depends, to some extent, on its pin depth. The electrical specifications for each device in the kit take into account the effect of pin depth on the device's performance. Table 2-2 on page 2-4 lists the typical pin depths and measurement uncertainties, and provides observed pin depth limits for the devices in the kit. If the pin depth of a device does not measure within the *observed* pin depth limits, it may be an indication that the device fails to meet electrical specifications. Refer to Figure 2-1 for a visual representation of proper pin depth (slightly recessed).

Device	Typical Pin Depth	Measurement Uncertainty ^a	Observed Pin Depth Limits ^b
Opens	-0.005 to -0.015 mm	+0.0030 to -0.0030 mm	-0.0020 to -0.0180 mm
	-0.0002 to -0.00059 in	+0.00012 to -0.00012 in	-0.00008 to -0.00071 in
Shorts	0 to -0.0127 mm	+0.0015 to -0.0015 mm	+0.0015 to -0.0142 mm
	0 to -0.0005 in	+0.00006 to -0.00006 in	+0.00006 to -0.00056 in
Fixed Loads and Terminations	-0.0025 to -0.0203 mm -0.0001 to -0.0008 in	+0.0030 to -0.0030 mm +0.00012 to -0.00012 in	+0.0005 to -0.0233 mm +0.00002 to -0.00092 in
Adapters	0 to -0.0381 mm	+0.0030 to -0.0030 mm	+0.0030 to -0.0411 mm
	0 to -0.0015 in	+0.00012 to -0.00012 in	+0.00012 to -0.00162 in

Table 2-2Pin Depth Limit

a. Approximately +2 sigma to -2 sigma of gage uncertainty based on studies done at the factory according to recommended procedures.

b. Observed pin depth limits are the range of observation limits seen on the gage reading due to measurement uncertainty. The depth could still be within specifications.

Electrical Specifications

The electrical specifications in Table 2-3 through Table 2-4 apply to the devices in your calibration kit when connected with an Agilent precision interface.

Device	Frequency	Parameter	Specifications			
			Male		Fe	male
			Polynomial Model	DataBased Model	Polynomial Model	DataBased Model
Lowband load	DC to 10 GHz	Return Loss (dB)	36	36	35	35
	10 to 20 GHz		34	34	34	34
	20 to 35 GHz		31	31	29	29
	35 to 60 GHz ^a		22	22	12	12
	60 to 67 GHz ^a		19	19	10	10
Open	DC to 10 GHz	Deviation from Nominal Phase (degrees)	2.2	2.0	2.7	2.5
	10 to 35 GHz		3.2	3.0	3.7	3.5
	35 to 50 GHz		NA ^b	3.0	NA ^b	3.5
	50 to 67 GHz		NA ^b	4.5	NA ^b	5.0
Short 1	DC to 20 GHz	Deviation from Nominal Phase (degrees)	1.7	1.5	1.7	1.5
	20 to 30 GHz		2.2	2.0	2.2	2.0
	30 to 35 GHz		2.2	2.0	2.7	2.5
	35 to 40 GHz		NA ^b	2.0	NA ^b	2.5

Table 2-3 85058B (Standard) Electrical Specifications for 1.85 mm Devices

Frequency	Parameter	Specifications				
		Γ	Male		male	
		Polynomial Model	DataBased Model	Polynomial Model	DataBased Model	
40 to 50 GHz		NA ^b	2.0	NA ^b	3.5	
50 to 67 GHz		NA^b	3.0	NA ^b	4.0	
DC to 20 GHz	Deviation from Nominal Phase (degrees)	NA ^b	1.5	NA ^b	1.5	
20 to 30 GHz		NA^b	2.0	NA ^b	2.0	
30 to 35 GHz		NA ^b	2.0	NA ^b	2.5	
35 to 40 GHz		2.4	2.0	2.9	2.5	
40 to 50 GHz		2.6	2.0	4.1	3.5	
50 to 67 GHz		3.6	3.0	4.6	4.0	
DC to 20 GHz	Deviation from Nominal Phase (degrees)	NA ^b	1.5	NA ^b	1.5	
20 to 30 GHz		NA ^b	2.0	NA ^b	2.0	
30 to 35 GHz		NA ^b	2.0	NA ^b	2.5	
35 to 40 GHz		2.4	2.0	2.9	2.5	
40 to 50 GHz		2.6	2.0	4.1	3.5	
	40 to 50 GHz 50 to 67 GHz DC to 20 GHz 20 to 30 GHz 30 to 35 GHz 35 to 40 GHz 40 to 50 GHz 50 to 67 GHz DC to 20 GHz 20 to 30 GHz 35 to 40 GHz 20 to 30 GHz 30 to 35 GHz 20 to 30 GHz 40 to 50 GHz 50 to 67 GHz 20 to 30 GHz 40 to 50 GHz 20 to 30 GHz 40 to 50 GHz 20 to 30 CHz 20 Ch 20 CHz 20 CH 20 CH	40 to 50 GHz50 to 67 GHzDC to 20 GHzDeviation from Nominal Phase (degrees)20 to 30 GHzJone 35 GHz30 to 35 GHzJone 40 GHz40 to 50 GHzDeviation from Nominal Phase (degrees)DC to 20 GHzDeviation from from Nominal Phase (degrees)20 to 30 GHzJone 35 to 40 GHz30 to 35 GHzJone 30 GHz30 to 30 GHzJone from Nominal Phase (degrees)20 to 30 GHzJone 30 GHz30 to 35 GHzJone 35 GHz30 to 35 GHzJone 30 to 35 GHz40 toJone 30 GHz40 toJone 30 GHz30 to 35 GHzJone 35 GHz30 to 35 GHzJone 35 GHz40 toJone 35 GHz30 to 35 GHzJone 35 GHz30 to 35 GHz<	Polynomial Model40 to 50 GHzNAb50 to 67 GHzNAb50 to 67 GHzDeviation from Nominal Phase (degrees)NAb20 to 30 GHzNAb20 to 30 GHzNAb30 to 35 GHz2.440 to 50 GHz2.650 to 67 GHz3.620 to 30 GHzNAb30 to 30 GHzNAb35 to 20 GHz2.440 to 50 GHz3.650 to 67 GHz3.620 to 30 GHzNAb30 to 30 GHzNAb20 to 30 GHz1.620 to 30 GHz1.620 to 30 GHz1.820 to 30 GHz1.820 to 30 GHz1.820 to 30 GHz1.820 to 30 GHz1.820 to 30 GHz1.830 to 35 GHz2.440 to2.6	Male 40 to Polynomial DataBased 40 to NA ^b 2.0 50 GHz NA ^b 3.0 50 to NA ^b 3.0 50 to Deviation NA ^b 3.0 20 Cto Deviation NA ^b 1.5 20 to Downinal Phase NA ^b 2.0 30 GHz NA ^b 2.0 2.0 30 to NA ^b 2.0 2.0 30 to S GHz 2.0 2.0 30 to S GHz 2.0 2.0 40 to S O GHz 2.0 2.0 50 to S O GHz 2.0 2.0 50 to S O GHz 2.0 3.0 50 to S O GHz 3.6 3.0 20 to Deviation from Nominal Phase (degrees) NA ^b 2.0 20 to NA ^b 2.0 3.0 3.0 20 to NA ^b 2.0 3.0 3.0 30 to S O to NA ^b 2.0 30 to NA ^b	Male Fee 40 to 50 GHz Polynomial Model Made Polynomial Model 40 to 50 GHz NA ^b 2.0 NA ^b 50 to 67 GHz NA ^b 3.0 NA ^b DC to 20 GHz Deviation from Nominal Phase (degrees) NA ^b 1.5 NA ^b 20 to 30 GHz Deviation from Nominal Phase (degrees) NA ^b 2.0 NA ^b 30 to 30 GHz 2.4 2.0 2.9 40 to 50 GHz 2.6 2.0 4.1 50 to 67 GHz Deviation Nominal Phase (degrees) NA ^b 1.5 20 to 30 GHz Deviation from Nominal Phase (degrees) NA ^b 1.5 NA ^b 20 to 30 GHz Deviation from Nominal Phase (degrees) NA ^b 1.5 NA ^b 20 to 30 GHz NA ^b 2.0 NA ^b 20 to 30 GHz NA ^b 2.0 NA ^b 30 to 35 GHz NA ^b 2.0 NA ^b 35 to 40 GHz 2.4 2.0 2.9 40 to 2.6 2.0 1.1	

Table 2-3 (Continued) 85058B (Standard) Electrical Specifications for 1.85 mmDevices

Device	Frequency	Parameter	Specifications			
			Ν	Male	Fe	male
			Polynomial Model	DataBased Model	Polynomial Model	DataBased Model
	50 to 67 GHz		4.4	3.0	5.4	4.0
Short 4	DC to 20 GHz	Deviation from Nominal Phase (degrees)	NA ^b	1.5	NA ^b	1.5
	20 to 30 GHz		NA ^b	2.0	NA ^b	2.0
	30 to 35 GHz		NA ^b	2.0	NA ^b	2.5
	35 to 40 GHz		2.7	2.0	2.9	2.5
	40 to 50 GHz		3.1	2.0	4.6	3.5
	50 to 67 GHz		4.2	3.0	5.2	4.0
Device	Frequency	Parameter	Speci	fications		
			Return Loss (dB)	Insertion Loss (dB)	_	
Adapters	DC to 4 GHz		34	0.3	_	
	4 to 26.5 GHz		25	0.5		
	26.5 to 50 GHz		24	0.7		
	50 to 67		22	0.9		

Table 2-3 (Continued) 85058B (Standard) Electrical Specifications for 1.85 mmDevices

a. Typical performance.

GHz

b. This cal device is not used in this frequency range when your calibration is using a polynomial model with Expanded Math unselected. Refer to "Two Models for Defining Calibration Standards" on page 1-2.

Device	Frequency	Parameter	Specifications			
			Male		Female	
			Polynomial Model	DataBased Model	Polynomial Model	DataBased Model
Broadband Termination	DC to 35 GHz	Return Loss (dB)	30	30	30	30
	35 to 67 GHz		28	28	28	28
Open	DC to 10 GHz	Deviation from Nominal Phase (degrees)	2.5	2.0	3.0	2.5
	10 to 50 GHz		4.0	3.0	4.5	3.5
	50 to 67 GHz		5.5	4.5	6.0	5.0
Short 1	DC to 20 GHz	Deviation from Nominal Phase (degrees)	2.0	1.5	2.0	1.5
	20 to 30 GHz		3.0	2.0	3.0	2.0
	30 to 40 GHz		3.0	2.0	3.5	2.5
	40 to 50 GHz		3.0	2.0	4.5	3.5
	50 to 67 GHz		4.0	3.0	5.0	4.0

Table 2-4 85058E (Economy) Electrical Specifications for 1.85 mm Devices

Device	Frequency	Parameter	Specifications		
			Return Loss (dB)	Insertion Loss (dB)	
Adapters	DC to 4 GHz		34	0.3	
	4 to 26.5 GHz		25	0.5	
	26.5 to 50 GHz		24	0.7	
	50 to 67 GHz		22	0.9	

Table 2-4 (Continued) 85058E (Economy) Electrical Specifications for1.85 mm Devices

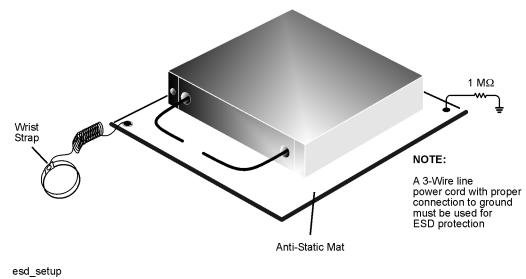
Certification

Agilent Technologies certifies that this product met its published specifications at the time of shipment from the factory. Agilent further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology (NIST) to the extent allowed by the institute's calibration facility, and to the calibration facilities of other International Standards Organization members. See "How Agilent Verifies the Devices in This Kit," on page 4-2 for more information.

Specifications
Electrical Specifications

3 Use, Maintenance, and Care of the Devices

Electrostatic Discharge


Protection against ESD (electrostatic discharge) is essential while connecting, inspecting, or cleaning connectors attached to a static-sensitive circuit (such as those found in test sets).

Static electricity can build up on your body and can easily damage sensitive internal circuit elements when discharged. Static discharges too small to be felt can cause permanent damage. Devices such as calibration components and devices under test (DUTs), can also carry an electrostatic charge. To prevent damage to the test set, components, and devices:

- *always* wear a grounded wrist strap having a $1 \text{ M}\Omega$ resistor in series with it when handling components and devices or when making connections to the test set.
- always use a grounded, conductive table mat while making connections.
- *always* wear a heel strap when working in an area with a conductive floor. If you are uncertain about the conductivity of your floor, wear a heel strap.
- *always* ground yourself before you clean, inspect, or make a connection to a static-sensitive device or test port. You can, for example, grasp the grounded outer shell of the test port or cable connector briefly.
- *always* ground the center conductor of a test cable before making a connection to the analyzer test port or other static-sensitive device. This can be done as follows:
 - 1. Connect a short (from your calibration kit) to one end of the cable to short the center conductor to the outer conductor.
 - 2. While wearing a grounded wrist strap, grasp the outer shell of the cable connector.
 - 3. Connect the other end of the cable to the test port.
 - 4. Remove the short from the cable.

Refer to Chapter 6 for part numbers and instructions for ordering ESD protection devices.

Figure 3-1 ESD Protection Setup

Visual Inspection

Visual inspection and, if necessary, cleaning should be done every time a connection is made. Metal particles from the connector threads may fall into the connector when it is disconnected. One connection made with a dirty or damaged connector can damage both connectors beyond repair.

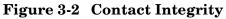
In some cases, magnification is necessary to see damage on a connector; a magnifying device with a magnification of $\geq 10 \times$ is recommended. (A magnifying glass is supplied with the 85058B (Standard) kit.) However, not all defects that are visible only under magnification will affect the electrical performance of the connector. Use the following guidelines when evaluating the integrity of a connector.

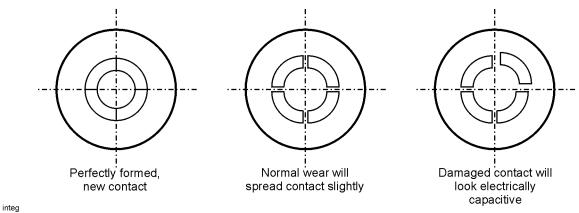
Look for Obvious Defects and Damage First

Examine the connectors first for obvious defects and damage: badly worn plating on the connector interface, deformed threads, or bent, broken, or misaligned center conductors. Connector nuts should move smoothly and be free of burrs, loose metal particles, and rough spots.

What Causes Connector Wear?

Connector wear is caused by connecting and disconnecting the devices. The more use a connector gets, the faster it wears and degrades. The wear is greatly accelerated when connectors are not kept clean, or are connected incorrectly.

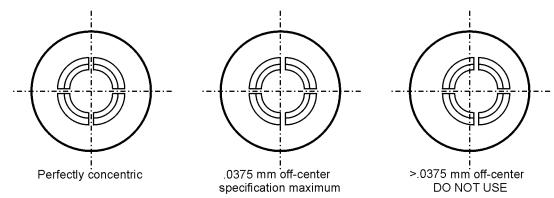

Connector wear eventually degrades performance of the device. Calibration devices should have a long life if their use is on the order of a few times per week. Replace devices with worn connectors.

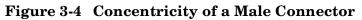

The test port connectors on the network analyzer test set may have many connections each day, and are therefore more subject to wear. It is recommended that an adapter be used as a test port saver to minimize the wear on the test set's test port connectors.

Connector Contacts

See Figure 3-2 on page 3-4 for visual guidelines when evaluating the contact integrity of a connector.

NOTE Notice the location of the cross hairs in relationship to the center of the figures.




Concentricity

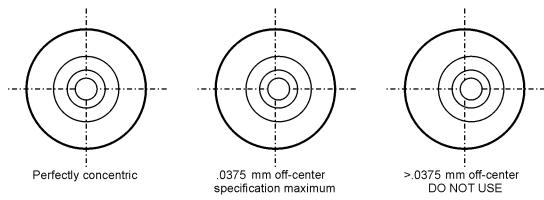

Figure 3-3 and Figure 3-4 show the concentricity of both the male and female 1.85 mm connectors. Inspect the connectors with a minimum magnification of 10X.

Figure 3-3 Concentricity of a Female Connector

feconect

maconect

Inspect the Mating Plane Surfaces

Flat contact between the connectors at all points on their mating plane surfaces is required for a good connection. See Figure 2-1 on page 2-3. Look especially for deep scratches or dents, and for dirt and metal particles on the connector mating plane surfaces. Also look for signs of damage due to excessive or uneven wear or misalignment.

Light burnishing of the mating plane surfaces is normal, and is evident as light scratches or shallow circular marks distributed more or less uniformly over the mating plane surface. Other small defects and cosmetic imperfections are also normal. None of these affect electrical or mechanical performance.

If a connector shows deep scratches or dents, particles clinging to the mating plane surfaces, or uneven wear, clean and inspect it again. Devices with damaged connectors should be discarded. Determine the cause of damage before connecting a new, undamaged connector in the same configuration.

Inspect Female Connectors

Pay special attention to the contact fingers in the female center conductor. These can be bent or broken, and damage to them is not always easy to see. A connector with damaged contact fingers will negatively affect electrical performance and must be replaced.

NOTE Inspection is particularly important when mating nonprecision to precision devices.

Cleaning Connectors

Clean connectors are essential for ensuring the integrity of RF and microwave coaxial connections.

1. Use Compressed Air or Nitrogen

WARNING Always use protective eyewear when using compressed air or nitrogen.

Use compressed air (or nitrogen) to loosen particles on the connector mating plane surfaces.

You can use any source of clean, dry, low-pressure compressed air or nitrogen that has an effective oil-vapor filter and liquid condensation trap placed just before the outlet hose.

Ground the hose nozzle to prevent electrostatic discharge, and set the air pressure to less than 414 kPa (60 psi) to control the velocity of the air stream. High-velocity streams of compressed air can cause electrostatic effects when directed into a connector. These electrostatic effects can damage the device. Refer to "Electrostatic Discharge" earlier in this chapter for additional information.

2. Clean the Connector Threads

WARNING	Keep isopropyl alcohol away from heat, sparks, and flame. Store in a tightly closed container. It is extremely flammable. In case of fire, use alcohol foam, dry chemical, or carbon dioxide; water may be ineffective.
	Use isopropyl alcohol with adequate ventilation and avoid contact with eyes, skin, and clothing. It causes skin irritation, may cause eye damage, and is harmful if swallowed or inhaled. It may be harmful if absorbed through the skin. Wash thoroughly after handling.
	In case of spill, soak up with sand or earth. Flush spill area with water.
	Dispose of isopropyl alcohol in accordance with all applicable federal, state, and local environmental regulations.

Use a lint-free swab or cleaning cloth moistened with isopropyl alcohol to remove any dirt or stubborn contaminants on a connector that cannot be removed with compressed air or nitrogen. Refer to Table 6-3 on page 6-8 for part numbers for isopropyl alcohol and cleaning swabs.

- a. Apply a small amount of isopropyl alcohol to a lint-free cleaning swab.
- b. Clean the connector threads.
- c. Let the alcohol evaporate, then blow the threads dry with a gentle stream of clean, low-pressure compressed air or nitrogen. Always completely dry a connector before you reassemble or use it.

3. Clean the Mating Plane Surfaces

- a. Apply a small amount of isopropyl alcohol to a lint-free cleaning swab.
- b. Clean the center and outer conductor mating plane surfaces. Refer to Figure 2-1 on page 2-3. When cleaning a female connector, avoid snagging the swab on the center conductor contact fingers by using short strokes.
- c. Let the alcohol evaporate, then blow the connector dry with a gentle stream of clean, low-pressure compressed air or nitrogen. Always completely dry a connector before you reassemble or use it.

4. Reinspect

Inspect the connector again to make sure that no particles or residue are present.

Gaging Connectors

The gages available from Agilent Technologies are intended for preventive maintenance and troubleshooting purposes only. (See Table 6-3 on page 6-8 for part number information.) They are effective in detecting excessive center conductor protrusion or recession, and conductor damage on DUTs, test accessories, and the calibration kit devices. *Do not use the gages for precise pin depth measurements.*

Connector Gage Accuracy

The connector gages are only capable of performing coarse measurements. They do not provide the degree of accuracy necessary to precisely measure the pin depth of the kit devices. This is partially due to the repeatability uncertainties that are associated with the measurement. Only the factory—through special gaging processes and electrical testing can accurately verify the mechanical characteristics of the devices.

With proper technique, however, the gages are useful in detecting gross pin depth errors on device connectors. To achieve maximum accuracy, random errors must be reduced by taking the average of at least three measurements having different gage orientations on the connector. Even the resultant average can be in error by as much as \pm 0.0001 inch due to systematic (biasing) errors usually resulting from worn gages and gage masters. The information in Table 2-2 on page 2-4 assumes new gages and gage masters. Therefore, these systematic errors were not included in the uncertainty analysis. As the gages undergo more use, the systematic errors can become more significant in the accuracy of the measurement.

The measurement uncertainties (see Table 2-2 on page 2-4) are primarily a function of the assembly materials and design, and the unique interaction each device type has with the gage. Therefore, these uncertainties can vary among the different devices. For example, note the difference between the uncertainties of the opens and shorts in Table 2-2.

The observed pin depth limits in Table 2-2 add these uncertainties to the typical factory pin depth values to provide practical limits that can be referenced when using the gages. See "Pin Depth" on page 2-3. Refer to "85058B (Standard) Kit Contents" on page 1-4 and "85058E (Economy) Kit Contents" on page 1-6 for more information on the design of the calibration devices in this kit.

NOTE When measuring pin depth, the measured value (resultant average of three or more measurements) is not the true value. Always compare the measured value with the observed pin depth limits in Table 2-2 on page 2-4 to evaluate the condition of device connectors.

When to Gage Connectors

Gage a connector at the following times:

- Prior to using a device for the first time: record the pin depth measurement so that it can be compared with future readings. (It will serve as a good troubleshooting tool when you suspect damage may have occurred to the device.)
- If either visual inspection or electrical performance suggests that the connector interface may be out of typical range (due to wear or damage, for example).
- If a calibration device is used by someone else or on another system or piece of equipment.
- Initially after every 100 connections, and after that as often as experience indicates.

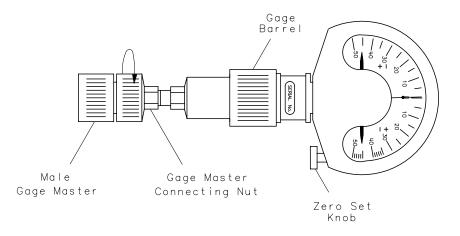
Gaging Procedures

Gaging Male 1.85 mm Connectors

- **NOTE** Always hold a connector gage by the gage barrel, below the dial indicator. This gives the best stability, and improves measurement accuracy. (Cradling the gage in your hand or holding it by the dial applies stress to the gage plunger mechanism through the dial indicator housing.)
- 1. Select the proper gage for your connector. The 1.85 mm connectors are gaged with the same gages and in the same way as precision 2.4 mm connectors. Refer to Table 6-3 on page 6-8 for gage part numbers.
- 2. Inspect and clean the gage, gage master, and device to be gaged. Refer to "Visual Inspection" and "Cleaning Connectors" earlier in this chapter.
- 3. Zero the connector gage (refer to Figure 3-5):
 - a. While holding the gage by the barrel, and without turning the gage or the device, screw the male gage master connecting nut onto the male gage, just until you meet resistance. Connect the nut finger tight. Do not overtighten.
 - b. Use the torque wrench recommended for use with the kit to tighten the connecting nut to 90 N-cm (8 in-lb). Refer to "Connections" on page 3-14 for more information.
 - c. As you watch the gage pointer, gently tap the barrel of the gage to settle the reading.

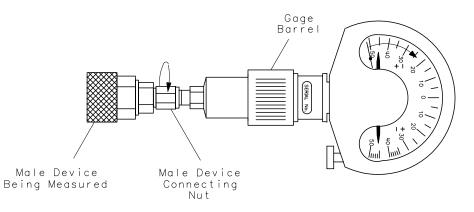
The gage pointer should line up exactly with the zero mark on the gage. If not, adjust the zero set knob until the gage pointer lines up exactly with zero.

- d. Remove the gage master.
- 4. Gage the device connector (refer to Figure 3-5):
 - a. While holding the gage by the barrel, and without turning the gage or the device, screw the connecting nut of the male device being measured onto the male gage, just until you meet resistance. Connect the nut finger-tight. Do not overtighten.
 - b. Use the torque wrench recommended for use with the kit to tighten the connecting nut to 90 N-cm (8 in-lb). Refer to "Connections" on page 3-14 for more information.
 - c. Gently tap the barrel of the gage with your finger to settle the gage reading.
 - d. Read the gage indicator dial. Read *only* the black \pm signs; *not* the red \pm signs.


For maximum accuracy, measure the connector a minimum of three times and take an average of the readings. After each measurement, rotate the gage a quarter-turn to reduce measurement variations that result from the gage or the connector face not being exactly perpendicular to the center axis.

e. Compare the average reading with the observed pin depth limits in Table 2-2 on page 2-4.

Figure 3-5 Gaging Male 1.85 mm Connectors


Zero the Connector Gage

- Screw the male gage master connecting nut onto the male gage.
- Torque the connecting nut.
- Gently tap the gage barrel to settle the reading.
- Using the zero set knob, adjust the gage pointer to line up exactly with the zero mark.
- Remove the gage master.

Gage the Device Connector

- Screw the male device connecting nut onto the male gage.
- Torque the connecting nut.
- Gently tap the gage barrel to settle the reading.
- Read recession or protrusion from the gage.
- Remove the device.

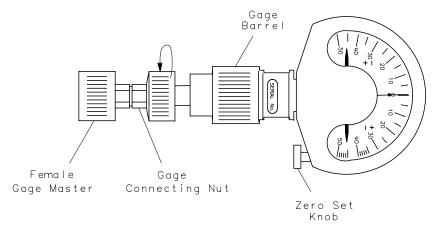
wj615d

Gaging Female 1.85 mm Connectors

- **NOTE** Always hold a connector gage by the gage barrel, below the dial indicator. This gives the best stability, and improves measurement accuracy. (Cradling the gage in your hand or holding it by the dial applies stress to the gage plunger mechanism through the dial indicator housing.)
- 1. Select the proper gage for your connector. The 1.85 mm connectors are gaged with the same gages and in the same way as precision 2.4 mm connectors. Refer to Table 6-3 on page 6-8 for gage part numbers.
- 2. Inspect and clean the gage, gage master, and device to be gaged. Refer to "Visual Inspection" and "Cleaning Connectors" earlier in this chapter.
- 3. Zero the connector gage (refer to Figure 3-6):
 - a. While holding the gage by the barrel, and without turning the gage or the device, screw the female gage connecting nut onto the female gage master, just until you meet resistance. Connect the nut finger-tight. Do not overtighten.
 - b. Use the torque wrench recommended for use with the kit to tighten the connecting nut to 90 N-cm (8 in-lb). Refer to "Connections" on page 3-14 for more information.
 - c. As you watch the gage pointer, gently tap the barrel of the gage to settle the reading.

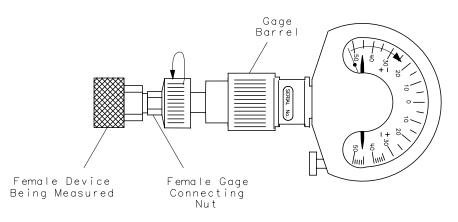
The gage pointer should line up exactly with the zero mark on the gage. If not, adjust the zero set knob until the gage pointer lines up exactly with zero.

- d. Remove the gage master.
- 4. Gage the device connector (refer to Figure 3-6):
 - a. While holding the gage by the barrel, and without turning the gage or the device, screw the female gage connecting nut onto the female device being measured, just until you meet resistance. Connect the nut finger-tight. Do not overtighten.
 - b. Use the torque wrench recommended for use with the kit to tighten the connecting nut to 90 N-cm (8 in-lb). Refer to "Connections" on page 3-14 for more information.
 - c. Gently tap the barrel of the gage with your finger to settle the gage reading.
 - d. Read the gage indicator dial. Read *only* the black \pm signs; *not* the red \pm signs.


For maximum accuracy, measure the connector a minimum of three times and take an average of the readings. Use different orientations of the gage within the connector. After each measurement, rotate the gage a quarter-turn to reduce measurement variations that result from the gage or the connector face not being exactly perpendicular to the center axis.

e. Compare the average reading with the observed pin depth limits in "Pin Depth Limit" on page 2-4.

Figure 3-6 Gaging Female 1.85 mm Connectors


Zero the Connector Gage

- Screw the female gage connecting nut onto the female gage master.
- Torque the connecting nut.
- Gently tap the gage barrel to settle the reading.
- Using the zero set knob, adjust the gage pointer to line up exactly with the zero mark.
- Remove the gage master.

Gage the Device Connector

- Screw the female gage connecting nut onto the female device.
- Torque the connecting nut.
- Gently tap the gage barrel to settle the reading.
- Read recession or protrusion from the gage.
- Remove the device.

wj616d

Connections

Good connections require a skilled operator. *The most common cause of measurement error is bad connections.* The following procedures illustrate how to make good connections.

How to Make a Connection

Preliminary Connection

- 1. Ground yourself and all devices. Wear a grounded wrist strap and work on a grounded, conductive table mat. Refer to "Electrostatic Discharge" on page 3-2 for ESD precautions.
- 2. Visually inspect the connectors. Refer to "Visual Inspection" on page 3-3.
- 3. If necessary, clean the connectors. Refer to "Cleaning Connectors" on page 3-6.
- 4. Use a connector gage to verify that all center conductors are within the observed pin depth values in Table 2-2 on page 2-4. Refer to "Gaging Connectors" on page 3-8.
- 5. Carefully align the connectors. The male connector center pin must slip concentrically into the contact finger of the female connector.
- 6. Push the connectors straight together.

CAUTION Do *not* turn the device body. Only turn the connector nut. Damage to the center conductor and outer conductor can occur if the device body is twisted.

Do *not* twist or screw the connectors together. As the center conductors mate, there is usually a slight resistance.

7. The preliminary connection is tight enough when the mating plane surfaces make uniform, light contact. Do not overtighten this connection.

A connection in which the outer conductors make gentle contact at all points on both mating surfaces is sufficient. Very light finger pressure is enough to accomplish this.

8. Make sure the connectors are properly supported. Relieve any side pressure on the connection from long or heavy devices or cables.

Final Connection Using a Torque Wrench

1. Use a torque wrench to make a final connection. Table 3-1 provides information about the torque wrench recommended for use with this calibration kit. A torque wrench is *not* included in the 85058E (Economy) calibration kit. Refer to Table 6-3 on page 6-8 for part number and ordering information.

Table 3-1 Torque Wrench Information

Connector Type	Torque Tolerance	
1.85 mm	90 N-cm (8 in-lb)	±9 N-cm (±0.8 in-lb)

Using a torque wrench guarantees that the connection is not too tight, preventing possible connector damage. It also guarantees that all connections are equally tight each time.

- 2. Prevent the rotation of anything other than the connector nut that you are tightening. It may be possible to do this by hand if one of the connectors is fixed (as on a test port). In all situations, however, it is recommended that you use an open-end wrench to keep the body of the device from turning. Refer to Chapter 6 for part number and ordering information.
- 3. Position both wrenches within 90 degrees of each other before applying force. See Figure 3-7. Wrenches opposing each other (greater than 90 degrees apart) will cause a lifting action which can misalign and stress the connections of the devices involved. This is especially true when several devices are connected together.

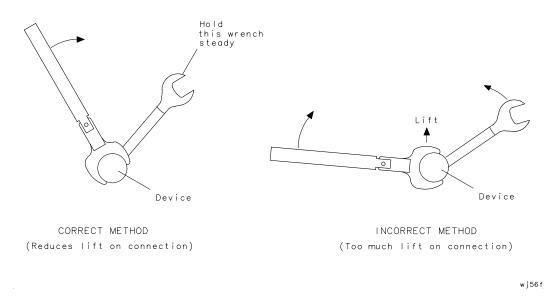
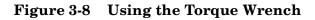
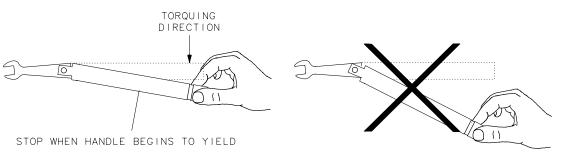




Figure 3-7 Wrench Positions

4. Hold the torque wrench lightly, at the end of the handle only (beyond the groove). See Figure 3-8.

5. Apply downward force perpendicular to the wrench handle. See Figure 3-8. This applies torque to the connection through the wrench.

Do not hold the wrench so tightly that you push the handle straight down along its length rather than pivoting it, otherwise you apply an unknown amount of torque.

6. Tighten the connection just to the torque wrench break point. The wrench handle gives way at its internal pivot point. See Figure 3-8. Do not tighten the connection further.

CAUTION	You don't have to fully break the handle of the torque wrench to reach the
	specified torque; doing so can cause the handle to kick back and loosen the
	connection. Any give at all in the handle is sufficient torque.

Do not pivot the wrench handle on your thumb or other fingers, otherwise you apply an unknown amount of torque to the connection when the wrench reaches its break point.

Do not twist the head of the wrench relative to the outer conductor mating plane. If you do, you apply more than the recommended torque.

How to Separate a Connection

To avoid lateral (bending) force on the connector mating plane surfaces, always support the devices and connections.

CAUTION	Turn the connector nut, not the device body. Major damage to the center
	conductor can occur if the device body is twisted.

- 1. Use an open-end wrench to prevent the device body from turning.
- 2. Use another open-end wrench to loosen the connector nut.
- 3. Complete the separation by hand, turning only the connector nut.
- 4. Pull the connectors straight apart without twisting, rocking, or bending either of the connectors.

Handling and Storage

- Install the protective end caps and store the calibration devices in the foam-lined storage case when not in use.
- Never store connectors loose in a box, desk, or bench drawer. This is the most common cause of connector damage during storage.
- Keep connectors clean.
- Do not touch mating plane surfaces. Natural skin oils and microscopic particles of dirt are easily transferred to a connector interface and are very difficult to remove.
- Do not set connectors contact-end down on a hard surface. The plating and the mating plane surfaces can be damaged if the interface comes in contact with any hard surface.

4 Performance Verification

Introduction

The performance of your calibration kit can only be verified by returning the kit to Agilent Technologies for recertification. The equipment required to verify the specifications of the devices in the kit has been specially manufactured and is not commercially available.

How Agilent Verifies the Devices in This Kit

Agilent verifies the specifications of these devices as follows:

- 1. The residual microwave error terms of the test system are verified with precision airlines and shorts that are directly traced to NIST (National Institute of Standards and Technology). The airline and short characteristics are developed from mechanical measurements. The mechanical measurements and material properties are carefully modeled to give very accurate electrical representation. The mechanical measurements are then traced to NIST through various plug and ring gages and other mechanical measurements.
- 2. Each calibration device is electrically tested on this system. For the initial (before sale) testing of the calibration devices, Agilent includes the test measurement uncertainty as a guardband to guarantee each device meets the published specification. For recertifications (after sale), no guardband is used and the measured data is compared directly with the specification to determine the pass or fail status. The measurement uncertainty for each device is, however, recorded in the calibration report that accompanies recertified kits.

These two steps establish a traceable link to NIST for Agilent to the extent allowed by the institute's calibration facility. The specifications data provided for the devices in this kit is traceable to NIST through Agilent Technologies.

Recertification

The following will be provided with a recertified kit:

- a new calibration sticker affixed to the case
- a certificate of calibration
- a calibration report for each device in the kit listing measured values, specifications, and uncertainties

NOTE A list of NIST traceable numbers may be purchased upon request to be included in the calibration report.

Agilent Technologies offers a *Standard* calibration for the recertification of this kit. For more information, contact Agilent Technologies. See Table 5-1 on page 5-3.

How Often to Recertify

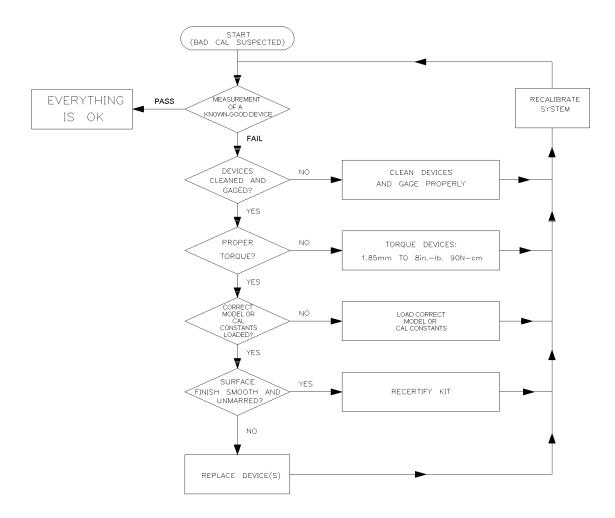
The suggested initial interval for recertification is 12 months or sooner. The actual need for recertification depends on the use of the kit. After reviewing the results of the initial recertification, you may establish a different recertification interval that reflects the usage and wear of the kit.

NOTE The recertification interval should begin on the date the kit is *first used* after the recertification date.

Where to Send a Kit for Recertification

Contact Agilent Technologies for information on where to send your kit for recertification. See Table 5-1 on page 5-3.

When you return the kit, complete and attach a service tag. Refer to "Returning a Kit or Device to Agilent," on page 5-3 for details.


Performance Verification Recertification

5 Troubleshooting

Troubleshooting Process

If you suspect a bad calibration, or if your network analyzer does not pass performance verification, follow the steps in Figure 5-1.

Figure 5-1 Troubleshooting Flowchart

Returning a Kit or Device to Agilent

If your kit or device requires service, contact the Agilent Technologies office nearest you for information on where to send it. See Table 5-1. Include a service tag (located near the end of this manual) on which you provide the following information:

- your company name and address
- a technical contact person within your company, and the person's complete phone number
- the model number and serial number of the kit
- the part number and serial number of each device
- the type of service required
- a *detailed* description of the problem and how the device was being used when the problem occurred (such as calibration or measurement)

Table 5-1 Contacting Agilent

United States (<i>tel</i>) 1 800 452 4844	Latin America (tel) (305) 269 7500 (fax) (305) 269 7599	Canada (tel) 1 877 894 4414 (fax) (905) 282-6495	Europe (<i>tel</i>) (+31) 20 547 2323 (<i>fax</i>) (+31) 20 547 2390
New Zealand (<i>tel</i>) 0 800 738 378 (<i>fax</i>) (+64) 4 495 8950	Japan (tel) (+81) 426 56 7832 (fax) (+81) 426 56 7840	Australia (tel) 1 800 629 485 (fax) (+61) 3 9210 5947	Singapore (tel) 1 800 375 8100 (fax) (65) 836 0252
Malaysia (<i>tel</i>) 1 800 828 848 (<i>fax</i>) 1 800 801 664	Philippines (tel) (632) 8426802 (tel) (PLDT subscriber only): 1 800 16510170 (fax) (632) 8426809 (fax) (PLDT subscriber only): 1 800 16510288	Thailand (<i>tel</i>) outside Bangkok: (088) 226 008 (<i>tel</i>) within Bangkok: (662) 661 3999 (<i>fax</i>) (66) 1 661 3714	Hong Kong (tel) 800 930 871 (fax) (852) 2506 9233
Taiwan (<i>tel</i>) 0800-047-866 (<i>fax</i>) (886) 2 25456723	People's Republic of China (tel) (preferred): 800-810-0189 (tel) (alternate): 10800-650-0021 (fax) 10800-650-0121	India (tel) 1-600-11-2929 (fax) 000-800-650-1101	

Online assistance: www.agilent.com/find/assist

Troubleshooting Returning a Kit or Device to Agilent

6 Replaceable Parts

Introduction

Table 6-1 lists the replacement part numbers for items included in the 85058B (Standard) calibration kit and Figure 6-1 illustrates each of these items.

Table 6-2 lists the replacement part numbers for items included in the 85058B (Economy) calibration kit and Figure 6-2 illustrates each of these items.

Table 6-3 lists the replacement part numbers for items recommended or required for successful operation but not included in the calibration kit.

To order a listed part, note the description, the part number, and the quantity desired. Telephone or send your order to Agilent Technologies. See Table 5-1 on page 5-3.

Description	Qty Per Kit	Agilent Part Number						
Calibration Devices (1.85 mm)a,b								
5.4 mm offset short 1 -m-	1	85058-60101						
6.3 mm offset short 2 -m-	1	85058-60102						
7.12 mm offset short 3 -m-	1	85058-60103						
7.6 mm offset short 4 -m-	1	85058-60104						
5.4 mm offset short 1 –f–	1	85058-60105						
6.3 mm offset short 2 –f–	1	85058-60106						
7.12 mm offset short 3 –f–	1	85058-60107						
7.6 mm offset short 4 –f–	1	85058-60108						
Offset open -m-	1	85058-60109						
Offset open -f-	1	85058-60110						
Lowband load -m-	1	85058-60111						
Lowband load -f-	1	85058-60112						
Adapters (1.85	mm) ^a							
Adapter m-m	1	85058-60113						
Adapter f-f	1	85058-60114						
Adapter m-f	1	85058-60115						
Calibration Kit Sto	rage Case							
Box	1	5180-5304						
Foam (top)	1	5180-5542						
Foam (bottom)	1	85058-80014						
Disk holder	1	5180-8491						
Wrenche	s							
5/16 in., 90 N–cm (8 in–lb) torque wrench	1	8710-1765						
8 mm open–end wrench	1	8710-2446						
Miscellaneous	Items							
$2.4 \ mm$ female gage set (also used for $1.85 \ mm)$	1	11752-60107						
2.4 mm male gage set (also used for $1.85 mm$)	1	11752-60108						
User's and service guide	1	85058-90005						

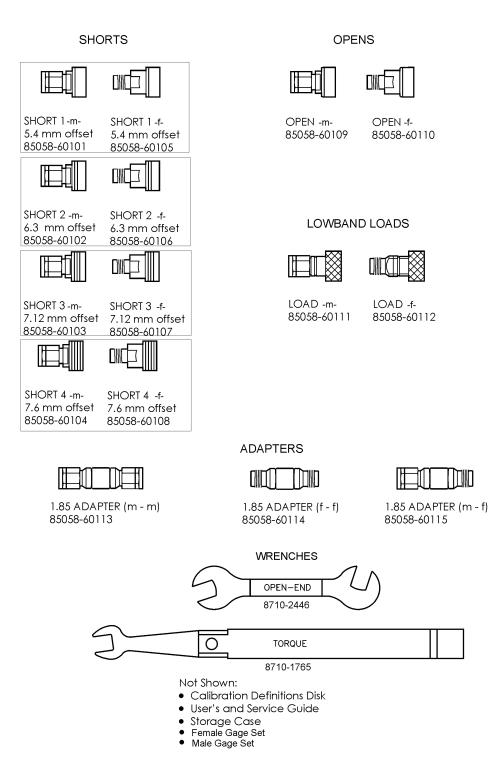
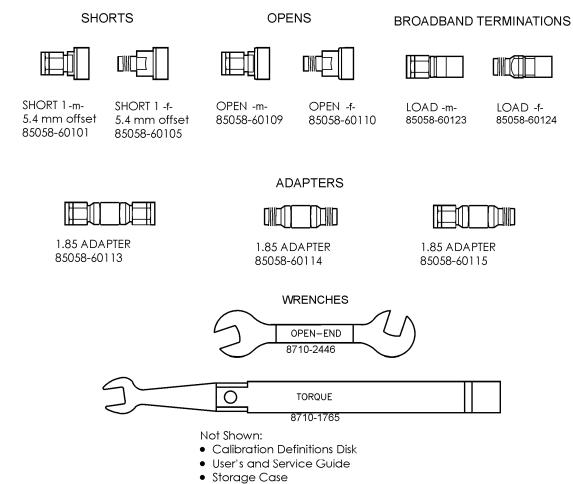

Table 6-1 Replaceable Parts for the 85058B (Standard) Calibration Kit

Table 6-1 Replaceable Parts for the 85058B (Standard) Calibration Kit

Description	Qty Per Kit	Agilent Part Number
Calibration definitions disk for the PNA and 8510 Series	1	85058-10003
10x Magnifying Glass	1	1000-1114
Connector Care Quick Reference Card	1	08510-90360
Protective end caps (male)	as required	1401-0208
Protective end caps (female)	as required	1401-0202

a. See "Clarifying the Sex of a Connector" on page 1-20.b. Refer to "How to Identify Devices" on page 1-5.

Figure 6-1 Replaceable Parts for the 85058B (Standard) Calibration Kit



Description	Qty Per Kit	Agilent Part Number							
Calibration Devices (1.85 mm) ^{a,b}									
5.4 mm offset short -m-	1	85058-60101							
5.4 mm offset short –f–	1	85058-60105							
Offset open -m-	1	85058-60109							
Offset open -f-	1	85058-60110							
Broadband termination -m-	1	85058-60123							
Broadband termination -f-	1	85058-60124							
Adapters (1.85	mm) ^a								
Adapter m–m	1	85058-60113							
Adapter f–f	1	85058-60114							
Adapter m–f	1	85058-60115							
Calibration Kit Sto	rage Case	•							
Box	1	5180-7862							
Foam (top)	1	5180-5544							
Foam (bottom)	1	85058-80015							
Disk holder	1	5180-8491							
Wrenche	s								
5/16 in., 90 N–cm (8 in–lb) torque wrench	1	8710-1765							
8 mm open-end wrench	1	8710-2446							
Miscellaneous	Items								
User's and service guide	1	85058-90005							
Calibration definitions disk for the PNA and 8510 Series	1	85058-11001							
Connector Care Quick Reference Card	1	08510-90360							
Protective end caps (male)	as required	1401-0208							
Protective end caps (female)	as required	1401-0202							

Table 6-2 Replaceable Parts for the 85058E (Economy) Calibration Kit

a. See "Clarifying the Sex of a Connector" on page 1-20.b. Refer to "How to Identify Devices" on page 1-5.

Figure 6-2 Replaceable Parts for the 85058E (Economy) Calibration Kit

Description	Qty	Agilent Part Number							
Adapters ^a (50 Ω)									
U-band waveguide to 1.85mm –f– coax	1	U281A							
U-band waveguide to 1.85mm –m– coax	1	U281B							
V-band waveguide to 1.85mm –f– coax	1	V281A							
V-band waveguide to 1.85mm –m– coax	1	V281B							
1mm -m- to 1.85mm -m-	1	11921E							
1mm –f– to 1.85mm –f–	1	11921F							
1mm -m- to 1.85mm -f-	1	11921G							
1mm –f– to 1.85mm –m–	1	11921H							
ESD Protective Devic	es								
Grounding wrist strap	1	9300-1367							
5 ft grounding cord for wrist strap	1	9300-0980							
2 ft by 4 ft conductive table mat with 15 ft grounding wire	1	9300-0797							
ESD heel strap	1	9300-1308							
Connector Cleaning Sup	plies								
Isopropyl alcohol	30 ml	8500-5344							
Foam tipped cleaning swabs	100	9301-1243							
The following items are included in the 85058B (85058E (Economy) kit.	Standard)	kit but NOT in the							
2.4 mm female gage set (also used for 1.85 mm)	1	11752-60107							
2.4 mm male gage set (also used for 1.85 mm)	1	11752-60108							
10x Magnifying Glass	1	1000-1114							

Table 6-3 Items Not Included in the Calibration Kits

a. See "Clarifying the Sex of a Connector" on page 1-20.

A Standard Definitions

Version Changes

Class assignments and standard definitions may change as more accurate model and calibration methods are developed. The disk shipped with the kit will contain the most recent version.

Standard Class Assignments

Class assignment organizes calibration standards into a format compatible with the error models used in the measurement calibration. A class or group of classes corresponds to the systematic errors to be removed from the measured network analyzer response. Table A-1 through Table A-6 list the classes of the devices in the calibration kits.

Calibration Kit Label: 1.85MMBA.1									
Class	А	В	С	D	Е	F	G	Standard Class Label	
S ₁₁ A	2	15	14	4	19	18		Open/Short	
S ₁₁ B	1	12	3	16				Short	
S ₁₁ C	9	13	17					Load/Short	
S ₂₂ A	2	15	14	4	19	18		Open/Short	
S ₂₂ B	1	12	3	16				Short	
$S_{22}C$	9	13	17					Load/Short	
Forward Transmission	11							Thru	
Reverse Transmission	11							Thru	
Forward Match	11							Thru	
Reverse Match	11							Thru	
Forward Isolation ^a	10								
Reverse Isolation	10								
Frequency Response	5	6	7	8	11			Response	
TRL Thru or Line	11							Thru	
TRL Reflect	5	7						Short	
TRL Line or Match	21							Match	
Adapter	20							Adapter	
			TRL (Optior	1			·	
Cal Z ₀ :	Sys	tem Z _C)			<u>X</u> L	ine Z ₀		
Set Ref: X Thru Reflect									
Lowband Frequency: <u>0 Hz</u>									

Table A-18510 family: 85058B (Standard kit, Polynomial model) Standard
Class Assignments

a. Forward isolation standard is also used for isolation part of response and isolation calibration.

Calibration Kit Label: 1.85N	AMEA.1	1	1	1	1	1		1
Class	Α	В	С	D	Е	F	G	Standard Class Label
S ₁₁ A	2	4						Open/Short
S ₁₁ B	1	3						Short
S ₁₁ C	9							Load/Short
S ₂₂ A	2	4						Open/Short
S ₂₂ B	1	3						Short
S ₂₂ C	9							Load/Short
Forward Transmission	11							Thru
Reverse Transmission	11							Thru
Forward Match	11							Thru
Reverse Match	11							Thru
Forward Isolation ^a	9							
Reverse Isolation	9							
Frequency Response	1	2	3	4	11			Response
TRL Thru or Line	11							Thru
TRL Reflect	1	7						Short
TRL Line or Match	14							Match
Adapter	13							Adapter
			TRL	Optior	1			
Cal Z ₀ :	Sys	tem Z ₍)			<u>X</u> L	ine Z ₀	
Set Ref: <u>X</u> ThruReflect								
Lowband Frequency: <u>0 Hz</u>								

Table A-28510 family: 85058E (Economy kit, Polynomial model) Standard
Class Assignments

a. Forward isolation standard is also used for isolation part of response and isolation calibration.

Calibration Kit Label: 85058B DataBased.ckt									
Class	А	В	С	D	Е	F	G	Standard Class Label	
S ₁₁ A	4	18	19	2	14	15		Open/Short	
S ₁₁ B	3	1						Short	
S ₁₁ C	9	17	24	13				Load/Short	
S ₂₂ A	4	18	19	2	14	15		Open/Short	
S ₂₂ B	3	1						Short	
$S_{22}C$	9	17	24	13				Load/Short	
Forward Transmission	11							Thru	
Reverse Transmission	11							Thru	
Forward Match	11							Thru	
Reverse Match	11							Thru	
Isolation									
TRL Thru or Line								Thru	
TRL Reflect								Short	
TRL Line or Match								Match	
TRL Option									
Cal Z ₀ :	Cal Z_0 :System Z_0 X Line Z_0								
Set Ref: Thru X Reflect									
Lowband Frequency: <u>0 Hz</u>									

Table A-3PNA family: 85058B (Standard kit, DataBased model) Standard
Class Assignments

Calibration Kit Label: 8505	58BP Pol	ynomia	al.ckt						
Class	Α	В	C	D	Е	F	G	н	Standard Class Label
S ₁₁ A	4	18	19	8	2	14	15	6	Open/Short
S ₁₁ B	3	16	7	1	12	5			Short
S ₁₁ C	9	17	10	24	13	22			Load/Short
S ₂₂ A	4	18	19	8	2	14	15	6	Open/Short
S ₂₂ B	3	16	7	1	12	5			Short
S ₂₂ C	9	17	10	24	13	22			Load/Short
Forward Transmission	11								Thru
Reverse Transmission	11								Thru
Forward Match	11								Thru
Reverse Match	11								Thru
Isolation									
TRL Thru or Line									Thru
TRL Reflect									Short
TRL Line or Match									Match
			T	RL Op	otion				
Cal Z ₀ :	S			X					
Set Ref:	X	Fhru				R			
Lowband Frequency: <u>0 H</u>	<u>Z</u>								

Table A-4PNA Family: 85058BP (Standard kit, Polynomial model) Standard
Class Assignments

Calibration Kit Label: 85058	BE DataBa	ased.ck	t					
Class	Α	В	С	D	Е	F	G	Standard Class Label
S ₁₁ A	4	2						Open/Short
S ₁₁ B	3	1						Short
S ₁₁ C	9	24						Load/Short
S ₂₂ A	4	2						Open/Short
S ₂₂ B	3	1						Short
S ₂₂ C	9	24						Load/Short
Forward Transmission	11							Thru
Reverse Transmission	11							Thru
Forward Match	11							Thru
Reverse Match	11							Thru
Isolation	9	24						
TRL Thru or Line								Thru
TRL Reflect								Short
TRL Line or Match								Match
			TRL (Option	L			
$Cal Z_0:$	Sys	tem Z ₀				<u>X</u> L	ine Z ₀	
Set Ref:	Tł	nru				<u>X</u> Refle	ect	
Lowband Frequency: <u>0 Hz</u>	_							

Table A-5PNA Family: 85058E (Standard kit, DataBased model) Standard
Class Assignments

Class	А	В	С	D	Е	F	G	Standard Class Label
S ₁₁ A	4	2						Open/Short
S ₁₁ B	3	1						Short
S ₁₁ C	9	24						Load/Short
S ₂₂ A	4	2						Open/Short
S ₂₂ B	3	1						Short
S ₂₂ C	9	24						Load/Short
Forward Transmission	11							Thru
Reverse Transmission	11							Thru
Forward Match	11							Thru
Reverse Match	11							Thru
Isolation	9	24						
TRL Thru or Line								Thru
TRL Reflect								Short
TRL Line or Match								Match
	·		TRL (Option	ı			
Cal Z ₀ :	Sys	tem Z ₀				<u>X</u> L	ine Z ₀	
Set Ref:	<u>X</u> Th	ru			_	_ Refle	ect	

Table A-6PNA Family: 85058EP (Standard kit, Polynomial model) Standard
Class Assignments

Blank Forms

Γ

The standard class assignments listed in Table A-1 through Table A-6 may be changed to meet your specific requirements. Table A-7 and Table A-8 are provided to record the modified standard class assignments.

Class	Α	В	С	D	Е	F	G	Standard Class Label
S ₁₁ A								Open
S ₁₁ B								Short
S ₁₁ C								Load
S ₂₂ A								Open
S ₂₂ B								Short
S ₂₂ C								Load
Forward Transmission								Thru
Reverse Transmission								Thru
Forward Match								Thru
Reverse Match								Thru
Forward Isolation ^a								
Reverse Isolation								
Frequency Response								Response
TRL Thru								Thru
TRL Reflect								Short
TRL Line								Load
Adapter								Adapter
			TRL (Option	1			
Cal Z ₀ :	Syst	em Z ₀				I	Line Z ₍)
Set Ref:	Th	ru				Ref	ect	
Lowband Frequency:								

 Table A-7
 8510 Family: Standard Class Assignments Blank Form

a. Forward isolation standard is also used for isolation part of response and isolation calibration.

Class	Α	В	С	D	Е	F	G	Standard Class Label
S ₁₁ A								Open/Short
S ₁₁ B								Short
S ₁₁ C								Load/Short
S ₂₂ A								Open/Short
S ₂₂ B								Short
S ₂₂ C								Load/Short
Forward Transmission								Thru
Reverse Transmission								Thru
Forward Match								Thru
Reverse Match								Thru
Isolation								
TRL Thru or Line								Thru
TRL Reflect								Short
TRL Line or Match								Match
	•		TRL (Option	 l			
Cal Z ₀ :	Syst	em Z ₀				I	Line Z ₍)
Set Ref:	Th	ru				Refl	ect	

Table A-8 PNA Family: Standard Class Assignments Blank Form

Nominal Standard Definitions

Standard definitions provide the definitions needed to mathematically model the electrical characteristics (delay, attenuation, and impedance) of each calibration standard. The nominal values of these definitions are theoretically derived from the physical dimensions and material of each calibration standard, or from actual measured response. These values are used to determine the measurement uncertainties of the network analyzer. The standard definitions in Table A-9 through Table A-14 list typical calibration kit parameters used to specify the mathematical model of each device. This information must be loaded into the network analyzer to perform valid calibrations. Refer to your network analyzer's user's guide or online Help for instructions on loading calibration definitions.

Setting the System Impedance

This kit contains only 50 ohm devices. Ensure the system impedance (Z_0) is set to 50 ohms. Refer to your network analyzer's user's guide for instructions on setting system impedance.

NOTE The values in the standard definitions table are valid *only* over the specified operating temperature range.

-	em Z ₀ ^a = File Nai		185MMBA	1			Calibr	atior	ı Kit Lal	oel: 1.8	85MM	BA.1	
Sta	undard ^b	$ m C0 imes 10^{-15} F$	Cl ×10 ⁻²⁷ F/Hz	$\mathrm{C2}\times\!10^{-36}\mathrm{F/Hz^2}$	C3 ×10 ⁻⁴⁵ F/Hz ³	Sliding ^c		Offset			uency GHz ^d		Label ^e
Number	Type	L0×10 ⁻¹² H	L1×10 ⁻²⁴ H/Hz	L2 ×10 ⁻³³ H/Hz ²	$L3 \times 10^{-42} H/Hz^3$	Fixed or Sliding ^c	Delay in ps	$\mathbf{Z}_0 \Omega$	Loss in GΩ/s	Min	Max	Coax or Waveguide	Standard Label ^e
1	Short	-0.6715	98.949	-0.8139	-0.0212		18.012	50	3.9774	0	35.5	Coax	(f) Shrt1 LB
2	Open	2.127	73.815	-9.1135	0.13886		18.011	50	3.2762	0	35.5	Coax	(f) Open LB
3	Short	1.8222	-934.86	64.091	-1.1161		18.012	50	3.9664	0	35.5	Coax	(m) Shrt1 LB
4	Open	-7.7748	1332.4	-64.26	0.90991		18.015	50	3.2754	0	35.5	Coax	(m) Open LB
5	Short	0.9658	8.9552	-0.7884	0.0079		18.012	50	4.0608	0	999	Coax	(f) Shrt1 BB
6	Open	2.2757	0.60959	-3.9739	0.05204		18.011	50	3.2815	0	999	Coax	(f) Open BB
7	Short	1.4957	-323.18	11.624	-0.10939		18.012	50	4.0812	0	999	Coax	(m) Shrt1 BB
8	Open	-3.5342	425.24	-13.946	0.12741		18.001	50	3.2822	0	999	Coax	(m) Open BB
9	Load					Fixed	0	50	0	0	35.5	Coax	35GHz Load
10	Load					Fixed	0	50	0	0	999	Coax	BB Load
11	Thru						0	50	0	0	999	Coax	Thru
12	Short	-26.329	1436.9	-24.8625	0.1393		18.012	50	4.0087	34.9	999	Coax	(f) Shrt1 HB
13	Short	5.2837	-255.25	4.4398	-0.0248		21.015	50	3.9424	34.9	999	Coax	(f) Shrt2
14	Short	-18.399	854.22	-12.502	0.0595		23.75	50	3.9568	45	999	Coax	(f) Shrt3
15	Short	31.176	-1738.2	32.421	-0.1988		25.351	50	3.8911	34.9	55	Coax	(f) Shrt4
16	Short	81.443	-5397.5	114.29	-0.77746		18.012	50	4.0306	34.9	999	Coax	(m) Shrt1 HB
17	Short	-168.11	10000	-195.63	1.2477		21.015	50	3.9661	34.9	999	Coax	(m) Shrt2
18	Short	-85.542	5237.9	-105.29	0.68943		23.75	50	3.9432	45	999	Coax	(m) Shrt3
19	Short	83.336	-4925.8	95.83	-0.61258		25.351	50	3.8798	34.9	55	Coax	(m) Shrt4
20	Thru						87.418	50	4	0	999	Coax	Adapter

Table A-98510 family: 85058B (Standard kit, Polynomial model) Standard
Definitions

(Continued) 8510 family: 85058B (Standard kit, Polynomial model) **Table A-9 Standard Definitions**

-	em Z ₀ ^a = File Nar		185MMBA	.1			Calibr	ation	Kit Lal	oel: 1.8	85MM	BA.1	
Sta	ndard ^b	C0 ×10 ⁻¹⁵ F	C1 ×10 ⁻²⁷ F/Hz	$C2 \times 10^{-36} \mathrm{F/Hz}^2$	C3 ×10 ⁻⁴⁵ F/Hz ³	Sliding ^c		Offset		Freq in G			l Label ^e
Number	Type	L0×10 ⁻¹² H	L1 ×10 ⁻²⁴ H/Hz	L2 ×10 ⁻³³ H/Hz ²	L3 ×10 ⁻⁴² H/Hz ³	Fixed or Sliding ^c	Delay in ps	$\mathbf{Z}_0 \Omega$	Loss in GΩ/s	Min	Max	Coax or Waveguide	Standard Label ^e
21	Thru					Fixed	1E+12	50	4	0	999	Coax	Load

a. Ensure system Z_0 of network analyzer is set to this value.

b. Open, short, load, delay/thru, or arbitrary impedance.
c. Load or arbitrary impedance only.
d. For waveguide, lower frequency is same as F_{CO}.

e. Refer to "Clarifying the Sex of a Connector" on page 1-20.

		^a = 50 Ω Name: C	K_185MI	MEA1			Calibr	atior	n Kit Lal	bel: 1	.85M	MEA.1	
Sta	ndard ^b	$ m C0 imes 10^{-15} \ F$	C1 ×10 ⁻²⁷ F/Hz	$C2 \times 10^{-36} \text{ F/Hz}^2$	C3 ×10 ⁻⁴⁵ F/Hz ³			Offset	:		juency GHz ^d		
Number	Type	L0 ×10 ⁻¹² H	L1 ×10 ⁻²⁴ H/Hz	L2×10 ⁻³³ H/Hz ²	L3 ×10 ⁻⁴² H/Hz ³	Fixed or Sliding ^c	Delay in ps	$\mathbf{Z_0}\Omega$	Loss in GΩ/s	Min	Max	Coax or Waveguide	Standard Label ^e
1	Short	0.9658	8.9552	-0.7884	0.0079		18.012	50	4.0608	0	999	Coax	(f) Shrt 1BB
2	Open	2.2757	0.60959	-3.9739	0.05204		18.011	50	3.2815	0	999	Coax	(f) Open BB
3	Short	1.4957	-323.18	11.624	-0.10939		18.012	50	4.0812	0	999	Coax	(m) Shrt 1BB
4	Open	-3.5342	425.24	-13.946	0.12741		18.001	50	3.2822	0	999	Coax	(m) Open BB
5													
6													
7													
8													
9	Load					Fixed	0	50	0	0	999	Coax	Term BB
10													
11	Thru						0	50	0	0	999	Coax	Thru
12											0.5-		
13	Thru						87.418	50	4	0	999	Coax	Adapter
14	Thru					Fixed	1E+12	50	4	0	999	Coax	Load
15 16													
10													
18													
19													
20													
21													

Table A-10 8510 family: 85058E (Economy kit, Polynomial Model) Standard Definitions

Dis	tem Z ₀ ^a = 50 Ω k File Name: 8 taBased.ckt		3				oration 8B Data	Kit Lab aBased	el:					
			$\mathrm{C0} imes \mathrm{10^{-15} F}$	$C1 \times 10^{-27} \text{ F/Hz}$	$C2 \times 10^{-36} \text{ F/Hz}^2$	$C3 \times 10^{-45} \text{ F/Hz}^3$			Offset			uency GHz ^c		
Number	Description	Type	L0 ×10 ⁻¹² H	$L1 \times 10^{-24} H/Hz$	$L2 \times 10^{-33} H/Hz^2$	$L3 \times 10^{-42} H/Hz^3$	Fixed or Sliding ^b	Delay in psec	Ζ₀ Ω	Loss in GΩ/s	Min	Max	Coax or Waveguide	Standard Label ^d
1	1.85 mm (1) 5.4 mm offset male short	Short	NA ^e	NA ^e	NA ^e	NA ^e		NA ^e	50	NA ^e	0	73	Coax	Short 1 -m-
2	1.85 mm male open	Open	NA ^e	NA ^e	NA ^e	NA ^e		NA ^e	50	NA ^e	0	35.5	Coax	Open LB -m-
3	1.85 mm (1) 5.4 mm offset female short	Short	NA ^e	NA ^e	NA ^e	NA ^e		NA ^e	50	NA ^e	0	73	Coax	Short 1 -f-
4	1.85 mm female open	Open	NA ^e	NA ^e	NA ^e	NA ^e		NA ^e	50	NA ^e	0	35.5	Coax	Open LB -f-
9	1.85 mm female lowband load	Load	NA ^e	NA ^e	NA ^e	NA ^e	Fixed	NA ^e	50	NA ^e	0	35.5	Coax	Lowband -f-
11	Insertable thru standard	Thru	NA ^e	NA ^e	NA ^e	NA ^e		0	50	0	0	73	Coax	Thru
13	1.85 mm (2) 6.3 mm offset male short	Short	NA ^e	NA ^e	NA ^e	NA ^e		NA ^e	50	NA ^e	34.9	73	Coax	Short 2 -m-
14	1.85 mm (3) 7.12 mm offset male short	Short	NA ^e	NA ^e	NA ^e	NA ^e		NA ^e	50	NA ^e	44.999	73	Coax	Short 3 -m-
15	1.85 mm (4) 7.6 mm offset male short	Short	NA ^e	NA ^e	NA ^e	NA ^e		NA ^e	50	NA ^e	34.9	55.01	Coax	Short 4-m-
17	1.85 mm (2) 6.3 mm offset female short	Short	NA ^e	NA ^e	NA ^e	NA ^e		NA ^e	50	NA ^e	34.9	73	Coax	Short 2 -f-
18	1.85 mm (3) 7.12 mm offset female short	Short	NA ^e	NA ^e	NA ^e	NA ^e		NA ^e	50	NA ^e	44.999	73	Coax	Short 3 -f-
19	1.85 mm (4) 7.6 mm offset female short	Short	NA ^e	NA ^e	NA ^e	NA ^e		NA ^e	50	NA ^e	34.9	55.01	Coax	Short 4 -f-
24	1.85 mm male lowband load	Load	NA ^e	NA ^e	NA ^e	NA ^e	Fixed	NA ^e	50	NA ^e	0	35.5	Coax	Lowband -m-

Table A-11 PNA family: 85058B (Standard kit, DataBased model) Standard **Definitions**

a. Ensure system \mathbf{Z}_0 of network analyzer is set to this value.

a. Load or arbitrary impedance only.
b. Load or arbitrary impedance only.
c. For waveguide, the lower frequency is the same as F_{CO.}
d. Refer to "Clarifying the Sex of a Connector" on page 1-20.
e. The definition for this DataBased calibration standard is in a non-editable file in the PNA.

Table A-12PNA family: 85058BP (Standard kit, Polynomial model) Standard
Definitions

	tem Z ₀ ^a = 50 S k File Name: 8		BP Poly	nomial.	ckt			Kit Lab lynomia						
			C0 ×10 ⁻¹⁵ F	$C1 \times 10^{-27} \text{ F/Hz}$	$C2 \times 10^{-36} \text{ F/Hz}^2$	C3 ×10 ⁻⁴⁵ F/Hz ³			Offset			ıency Hz ^b		
Number	Description	Type	$L0 \times 10^{-12} H$	L1 ×10 ⁻²⁴ H/Hz	L2 ×10 ⁻³³ H/Hz ²	L3 ×10 ⁻⁴² H/Hz ³	Fixed or Sliding ^c	Delay in psec	Z ₀ Ω	Loss in GΩ/s	Min	Max	Coax or Waveguide	Standard Label ^d
1	1.85 mm (1LB) 5.4 mm offset male short	Short	-0.6715	98.949	-0.889	-0.0212		18.012	50	3.9774	0	35.010	Coax	Short 1 LB -m-
2	1.85 mm male open	Open	2.127	73.815	-9.1135	0.13586		18.011	50	3.2762	0	35.5	Coax	Open LB -m-
3	1.85 mm (1LB) 5.4 mm offset female short	Short	1.8222	-934.86	64.091	-1.1161		18.012	50	3.9664	0	35.010	Coax	Short 1 LB -f-
4	1.85 mm female open	Open	-7.7748	1332.4	-64.26	0.90991		18.015	50	3.2754	0	35.5	Coax	Open LB -f-
5	1.85 mm broadband male short	Short	0.9658	8.9552	-0.7884	0.0079		18.012	50	4.0608	0	999	Coax	Short 1 BB -m-
6	1.85 mm broadband male open	Open	2.2757	0.60959	-3.9739	0.05204		18.011	50	3.2815	0	999	Coax	Open BB -m-
7	1.85 mm broadband female short	Short	1.4957	-323.18	11.624	-0.10939		18.012	50	4.0812	0	999	Coax	Short 1 BB -f-
8	1.85 mm broadband female open	Open	-3.5342	425.24	-13.946	0.12741		18.001	50	3.2822	0	999	Coax	Open BB -f-
9	1.85 mm female lowband load	Load					Fixed	0	50	0	0	35.5	Coax	Lowband -f-
10	1.85 mm female broadband load	Load					Fixed	0	50	0	0	999	Coax	Broadband -f-
11	Insertable thru standard	Thru						0	50	0	0	73	Coax	Thru
12	1.85 mm (1HB) 5.4 mm offset male short	Short	-26.329	1436.9	-24.8625	0.1393		18.012	50	4.0087	34.9	73	Coax	Short 1 HB -m-
13	1.85 mm (2) 6.3 mm offset male short	Short	5.2837	-255.25	4.4398	-0.0248		21.015	50	3.9424	34.9	73	Coax	Short 2 -m-
14	1.85 mm (3) 7.12 mm offset male short	Short	-18.399	854.22	-12.502	0.0595		23.75	50	3.9568	44.999	73	Coax	Short 3 -m-
15	1.85 mm (4) 7.6 mm offset male short	Short	31.178	-1738.2	32.421	-0.1988		25.351	50	3.8911	34.9	55.01	Coax	Short 4-m-

	tem Z ₀ ^a = 50 Ω k File Name: 8		SP Poly	nomial.	ckt			Kit Lab Iynomia						
			$C0 \times 10^{-15} F$	$C1 \times 10^{-27}$ F/Hz	C2 ×10 ⁻³⁶ F/Hz ²	$C3 \times 10^{-45} \text{ F/Hz}^3$		(Offset			uency Hz ^b		
Number	Description	Type	$L0 \times 10^{-12} H$	L1×10 ⁻²⁴ H/Hz	L2×10 ⁻³³ H/Hz ²	$L3 \times 10^{-42} H/Hz^3$	Fixed or Sliding ^c	Delay in psec	$\mathbf{Z}_0 \Omega$	Loss in GO/s	Min	Max	Coax or Waveguide	Standard Label ^d
16	1.85 mm (1HB) 5.4 mm offset female short	Short	81.443	-5397.5	114.29	-0.7775		18.012	50	4.0306	34.9	73	Coax	Short 1 HB -f-
17	1.85 mm (2) 6.3 mm offset female short	Short	-168.11	1025	-195.63	1.2477		21.015	50	3.9661	34.9	73	Coax	Short 2 -f-
18	1.85 mm (3) 7.12 mm offset female short	Short	-85.542	-5237.9	-105.29	-0.68943		23.75	50	3.9432	44.999	73	Coax	Short 3 -f-
19	1.85 mm (4) 7.6 mm offset female short	Short	83.336	-4925.8	95.83	-0.6126		25.351	50	3.8798	34.9	55.01	Coax	Short 4 -f-
22	1.85 mm male broadband load	Load					Fixed	0	50	0	0	999	Coax	Broadband -m-
24	1.85 mm male lowband load	Load					Fixed	0	50	0	0	35.5	Coax	Lowband -m-

(Continued) PNA family: 85058BP (Standard kit, Polynomial model) Table A-12 **Standard Definitions**

a. Ensure system ${\rm Z}_0$ of network analyzer is set to this value.

	tem Z ₀ ^a = 50 Ω k File Name: 8		Datal	Based.c	kt			Calib 85058			Label: sed			
			C0 ×10 ⁻¹⁵ F	$C1 \times 10^{-27} \text{ F/Hz}$	$C2 \times 10^{-36} \text{ F/Hz}^2$	$C3 \times 10^{-45} \text{ F/Hz}^3$			Offset			uency Hz ^b		
Number	Description	Type	L0 ×10 ⁻¹² H	L1 ×10 ⁻²⁴ H/Hz	L2 ×10 ⁻³³ H/Hz ²	L3 ×10 ⁻⁴² H/Hz ³	Fixed or Sliding ^c	Delay in psec	$\mathbf{Z}_{0} \Omega$	Loss in GΩ/s	Min	Max	Coax or Waveguide	Standard Label ^d
1	1.85 mm male short	Short	NA ^e	NA ^e	NA ^e	NA ^e		NA ^e	50	NA ^e	0	73	Coax	Short 1 -m-
2	1.85 mm male open	Open	NA ^e	NA ^e	NA ^e	NA ^e		NA ^e	50	NA ^e	0	73	Coax	Open BB -m-
3	1.85 mm female short	Short	NA ^e	NA ^e	NA ^e	NA ^e		NA ^e	50	NA ^e	0	73	Coax	Short 1 -f-
4	1.85 mm female open	Open	NA ^e	NA ^e	NA ^e	NA ^e		NA ^e	50	NA ^e	0	73	Coax	Open BB -f-
9	1.85 mm female broadband load	Load	NA ^e	NA ^e	NA ^e	NA ^e	Fixed	NA ^e	50	NA ^e	0	73	Coax	Broadband -f-
11	Insertable thru standard	Thru	NA ^e	NA ^e	NA ^e	NA ^e		0	50	0	0	73	Coax	Thru
24	1.85 mm male broadband load	Load	NA ^e	NA ^e	NA ^e	NA ^e	Fixed	NA ^e	50	NA ^e	0	73	Coax	Broadband -m-

Table A-13 PNA family: 85058E (Economy kit, DataBased model) Standard **Definitions**

a. Ensure system ${\rm Z}_0$ of network analyzer is set to this value.

b. For waveguide, the lower frequency is the same as F_{CO.}

c. Load or arbitrary impedance only.
d. Refer to "Clarifying the Sex of a Connector" on page 1-20.
e. The definition for this DataBased calibration standard is in a non-editable file in the PNA.

	tem Z ₀ ^a = 50 S k File Name: 8		P Polyn	omial.c	kt			Kit Labo lynomial						
			C0×10 ⁻¹⁵ F	$C1 \times 10^{-27} F/Hz$	$C2 \times 10^{-36} \text{ F/Hz}^2$	$C3 \times 10^{-45} \text{ F/Hz}^3$		c	Offset			uency Hz ^b		
Number	Description	Type	L0×10 ⁻¹² H	L1 ×10 ⁻²⁴ H/Hz	$L2 \times 10^{-33} H/Hz^2$	$L3 \times 10^{-42} H/Hz^3$	Fixed or Sliding ^c	Delay in psec	Z ₀ Ω	Loss in GΩ/s	Min	Max	Coax or Waveguide	Standard Label ^d
1	1.85 mm broadband male short	Short	0.9658	8.9552	-0.7884	0.0079		18.012	50	4.0608	0	999	Coax	Short 1 BB -m-
2	1.85 mm broadband male open	Open	2.2757	0.60959	-3.9739	0.05204		18.011	50	3.2815	0	999	Coax	Open BB -m-
3	1.85 mm broadband female short	Short	1.4957	-323.18	11.624	-0.10939		18.012	50	4.0812	0	999	Coax	Short 1 BB -f-
4	1.85 mm broadband female open	Open	-3.5342	425.24	-13.946	0.12741		18.001	50	3.2822	0	999	Coax	Open BB -f-
9	1.85 mm female broadband load	Load					Fixed	0	50	0	0	999	Coax	Broadband -f-
11	Insertable thru standard	Thru						0	50	0	0	73	Coax	Thru
24	1.85 mm male broadband load	Load					Fixed	0	50	0	0	999	Coax	Broadband -m-

Table A-14 PNA family: 85058EP (Economy kit, Polynomial model) Standard Definitions

a. Ensure system Z_0 of network analyzer is set to this value. b. For waveguide, the lower frequency is the same as $F_{\rm CO.}$

c. Load or arbitrary impedance only.
d. Refer to "Clarifying the Sex of a Connector" on page 1-20.

ſ

Blank Forms

The standard definitions listed in Table A-9 through Table A-14 may be changed to meet your specific requirements. Table A-15 and Table A-16 are provided to record the modified standard definitions.

System Z ₀ =Calibration Kit Label:Disk File Name:													
Standard		C0×10 ⁻¹⁵ F	C1×10 ⁻²⁷ F/Hz	C2×10 ⁻³⁶ F/Hz ²	$C3 \times 10^{-45} F/Hz^3$		Offset			Frequency in GHz			
Number	Type	L0 ×10 ⁻¹² H	L1 ×10 ⁻²⁴ H/Hz	L2 ×10 ⁻³³ H/Hz ²	L3 ×10 ⁻⁴² H/Hz ³	Fixed or Sliding	Delay in ps	$\mathbf{Z_0}$ Ω	Loss in GΩ/s	Min	Max	Coax or Waveguide	Standard Label
1													
2													
3													
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													

Sys Disl	tem Z ₀ ^a = k File Name:	Calibration Kit Label:												
Number	Description	Type	C0×10 ⁻¹⁵ F		$C2\times 10^{-36}F/Hz^2$	$C3 \times 10^{-45} \text{ F/Hz}^3$	Fixed or Sliding ^c	Offset			Frequency in GHz ^b			
			L0 ×10 ⁻¹² H		L2×10 ⁻³³ H/Hz ²	L3×10 ⁻⁴² H/Hz ³		Delay in sec	Z ₀ Ω	Loss in GQ/s	Min	Max	Coax or Waveguide	Standard Label ^d
1														
2														
3														
4														
5														
6														
7														
8														
9														
10														
11														
12														
13														
14														
15														
16														
17														
18														
19														
21														
22														
23														
24														

Table A-16 PNA family: Standard Definitions Blank Form

a. Ensure system Z_0 of network analyzer is set to this value. b. For waveguide, the lower frequency is the same as $F_{\rm CO.}$

c. Load or arbitrary impedance only.
d. Refer to "Clarifying the Sex of a Connector" on page 1-20.

Standard Definitions
Nominal Standard Definitions

Numerics

85058B and 85058BP, 1-2 85058E and 85058EP, 1-2

A

adapters, 1-5, 1-6, 1-7 part numbers, 6-8 Agilent Technologies, contacting, 5-3 alcohol, isopropyl, as cleaning solvent, 3-6 altitude, 2-2

В

bands that identify devices, 1-5 blank form standard class assignments, A-9 standard definitions, A-20 broadband calibration technique 85058E, 1-4 broadband SOLT calibration standards, 1-9 calibration technique, 1-9 broadband terminations, 1-6

С

cal kit contents, 1-4 overview, 1-2 return to Agilent, 5-3 serial number, 1-18 calibration 1-Port, 85058B cal kit, 1-10 1-Port, 85058E cal kit, 1-11 2-Port, 85058B cal kit, 1-12 2-Port, 85058E cal kit, 1-13 bad, 5-2 broadband SOLT technique, 85058E, 1-9 certificate of, 4-2 definitions, 1-7 devices 85058B, 6-3 85058E, 6-6 offset-short technique, 85058B, 1-9 temperature, 2-2 calibration definitions entering, 1-7 permanently stored, 1-7 calibration definitions disk part number, 6-3, 6-6 calibration error specifications 85058B DataBased.ckt, 1-14 85058E DataBased.ckt, 1-16 calibration kit contents, 1-4 overview, 1-2 return to Agilent, 5-3 serial number, 1-18 calibration kit labels 85058B cal kit, 1-8

85058E cal kit, 1-9 calibration report, 4-2 calibration sticker, 4-3 calibration technique 85058B, 1-4 85058E, 1-4 certificate of calibration, 4-2 certification, specifications, 2-9 characteristics mechanical, 2-3 supplemental, 2-3 class assignment standard, A-2 class assignments blank form, A-9 cleaning connectors, 3-6 cleaning supplies, 1-7 ordering, 6-8 part numbers, 6-8 compressed air or nitrogen, 3-6 conductor mating plane, 2-3 connections, 3-2, 3-14, 3-16 cautions in making, 3-14 disconnecting, 3-16 ESD concerns, 3-14 final, 3-14 how to make, 3-14 preliminary, 3-14 undoing, 3-16 using a torque wrench, 3-14 connector cleaning, 3-6 cleaning supplies, 6-8 damage, 3-3 female, 3-5, 3-12 gaging, 3-8 when to do, 3-9 life, 3-3 male, 3-10 mating plane, 3-6 sex, 1-20 threads, 3-6 visual inspection, 3-3 wear, 3-3 connector contacts concentricity, 3-4 integrity, 3-4 connector gage handling, 3-10, 3-12 zeroing, 3-10, 3-12 connector gage accuracy, 3-8 connectors, slotted, 1-20 contacting Agilent Technologies, 5-3 contents kit, 1-4

D

damage to connectors, 3-3

Index

damage, shipment, 1-17 damaged connectors, 3-3 data, recertification, 4-2 DataBased model, 1-2 defective connectors, 3-3 defining calibration standards, two models, 1-2 definitions calibration, 1-7 entering, 1-7 permanently stored, 1-7 standard, A-11 deviation from nominal phase, 85058B, 2-5 deviation from nominal phase, 85058E, 2-8 device conductor mating plane, 2-3 connecting, 3-14 disconnecting, 3-16 handling, 3-16 maintenance, 1-20 part numbers, 6-8 pin depth, 2-3 return to Agilent, 5-3 storage, 3-16 temperature, 2-2 visual inspection, 3-3 devices how Agilent verifies, 4-2 serial numbers, 1-18 dimensions device center conductor, 2-3 outer conductor, 2-3 disconnections, 3-16 disk file names 85058E cal kit, 1-9 disk file names, 85058B cal kit, 1-8 documentation warranty, ii

Е

electrical specifications, 85058B, 2-5 electrical specifications, 85058E, 2-8 electrostatic discharge, 3-2 supplies part numbers, 6-8 when making connections, 3-14 environmental requirements, 2-2 equipment required, 1-7 required but not supplied, 1-7 supplied, 1-4, 6-2, 6-3, 6-6 error specifications calibration 85058B DataBased.ckt, 1-14 85058E DataBased.ckt, 1-16 ESD, 3-2 precautions, 3-2, 3-6 protection devices, 1-7 supplies part numbers, 6-8

when making connections, 3-14 expanded math, 1-3

F

frequency performance, 1-7 range, 85058B, 2-5 range, 85058E, 2-8 specifications, 85058B, 2-5 specifications, 85058E, 2-8

G

```
gage
connector
handling, 3-10, 3-12
master, 6-8
zeroing, 3-10, 3-12
gage master
part numbers, 6-8
gages, 1-7
gaging
female connectors, 3-12
male connectors, 3-10
gaging connectors, 3-8
when to do, 3-9
```

H

handling, 3-16 how to identify calibration devices, 1-5 humidity, 2-2

I

identifying shorts, opens, & loads, 1-5
impedance
 system, A-11
incoming inspection, 1-17
inspection
 damage, 3-3
 defects, 3-3
 female connectors, 3-5
 incoming, 1-17
 mating plane, 3-5
 visual, 3-3
isopropyl alcohol, as cleaning solvent, 3-6

K

kit contents, 1-4 overview, 1-2 return to Agilent, 5-3 serial number, 1-18

L

label calibration, 4-3 loads lowband, 1-4 lowband loads, 1-4

Index

M

maintenance, 3-2 preventive, 1-20 maintenance of devices, 1-20 making connections, 3-14 manual part number, 6-3, 6-6 math, expanded, 1-3 mating plane conductor, 2-3 connector, 3-6 inspection, 3-5 surfaces, 3-7 mechanical characteristics, 2-3 mechanical integrity, 2-3 models for defining calibration standards, 1-2

Ν

nitrogen, 3-6 nominal standard definitions, A-11 numbers, serial, recording, 1-18

0

offset opens, 1-5, 1-6 offset short calibration technique, 85058B, 1-4 offset shorts, 1-5, 1-6 offset-short calibration standards, 1-8 calibration technique, 1-8 open-end wrench, 3-16 part number, 6-3, 6-6 opens, 1-5, 1-6 ordering parts, 6-2

Р

part numbers, 6-2 parts ordering, 6-2 replaceable, 6-2 required but not supplied, 6-8 performance verification, 4-2 fail, 5-2 pin depth, 2-3 affect on electrical performance, 2-4 definition of, 2-3 effect on electrical specifications, 2-4 importance of, 2-4 observed limits, 2-4 protrusion, 2-3 recession, 2-3 typical values, 2-4 Polynomial model, 1-3 preventive maintenance, 1-20 protrusion pin depth, 2-3

R

recertification, 4-3 how often?, 4-3 interval, 4-3 what's included, 4-3 where to send your kit, 4-3 recession pin depth, 2-3 regulations environmental, 3-6 replaceable parts, 6-2 requirements environmental, 2-2 return loss specifications, 85058B, 2-5 specifications, 85058E, 2-8 return, kit or device, 5-3 rings that identify devices, 1-5

S

serial numbers, recording, 1-18 service, 5-2 service tag, 1-17, 4-3, 5-3 sex, connector, 1-20 shipment damage, 1-17 verifying complete, 1-17 shorts, 1-5, 1-6 slotted connectors, 1-20 SOLT broadband calibration. 1-9 specifications, 2-2 altitude, 2-2 calibration errors 85058B DataBased.ckt, 1-14 85058E DataBased.ckt, 1-16 certification, 2-9 electrical, 85058B, 2-5 electrical, 85058E, 2-8 environmental, 2-2 frequency, 85058B, 2-5 frequency, 85058E, 2-8 humidity, 2-2 pin depth, 2-4 return loss, 85058B, 2-5 return loss, 85058E, 2-8 temperature, 2-2 verifying, 4-2 specified frequency performance, 1-7 standard class assignments 8510 family 85058B, A-3 85058E, A-4 blank form, A-9 PNA family 85058B, A-5 85058BP, A-6 85058E, A-7 85058EP, A-8 standard definitions, A-11, A-20 8510 family 85058B, A-12 85058E, A-14 blank form, A-20

Index

nominal, A-11 PNA family 85058B, A-14 85058BP, A-14 85058E, A-14 85058EP, A-14 standards NIST, 2-9, 4-3 static discharge, 3-2 sticker calibration, 4-3 storage, 3-16 altitude, 2-2 humidity, 2-2 temperature, 2-2 supplemental characteristics, 2-3 supplies cleaning, 1-7 system impedance setting, A-11

Т

tag service, 4-3, 5-3 tag, service, 1-17 temperature calibration, 2-2 device, 2-2 error-corrected temperature range, 2-2 measurement, 2-2 operating range, 2-2 verification and measurement, 2-2 terminations, broadband, 1-6 test data, 4-2 threads connector, 3-6 torque wrench, 3-14 part number, 6-3, 6-6 specifications, 3-14 traceability, 4-2 troubleshooting, 5-2

v

verification performance, 4-2 temperature, 2-2 visual inspection, 3-3

W

```
warranty, documentation, ii
wrench
open-end, 3-16
part number, 6-3, 6-6
undoing connections, 3-16
torque
part number, 6-3, 6-6
wrenches
part numbers, 6-3, 6-6
```

Z

zeroing connector gage, 3-10, 3-12